Proton Donors Influence Nitrogen Adsorption in Lithium-Mediated Electrochemical Ammonia Synthesis

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL
Victor Azumah, Lance Kavalsky, Venkatasubramanian Viswanathan
{"title":"Proton Donors Influence Nitrogen Adsorption in Lithium-Mediated Electrochemical Ammonia Synthesis","authors":"Victor Azumah, Lance Kavalsky, Venkatasubramanian Viswanathan","doi":"10.1021/acs.jpcc.4c08138","DOIUrl":null,"url":null,"abstract":"Lithium-mediated electrochemical ammonia synthesis (LiMEAS) has recently shown promise toward efficient electrochemical ammonia production. This process relies on the formation of a lithium nitride film which is subsequently protonated to release ammonia. Designing the electrolyte for this technology requires the selection of a proton donor. In this work, we perform a first-principles analysis to investigate the initial step of nitride formation considering 30 different proton donors (PD). As a baseline, modeling nitrogen on a lithium surface without a PD, we observe that N<sub>2</sub> does not spontaneously dissociate on the lithium surface. However, explicitly introducing a PD into the system results in five unique recurring nitrogen configurations on the lithium slab: (1) embedded, (2) adsorbed, (3) standing, (4) buried, and (5) transferred states. We show that these PD-induced states possess an elongated N–N bond and adsorb more strongly on lithium. Using charge analysis, we show that the charge transferred onto these states strongly correlates with the change in their bond length, a crucial parameter for nitrogen dissociation. These results suggest a more involved role of the PD in the initial stages of nitride formation, and motivate greater consideration for their impact on the LiMEAS pathway.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"29 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c08138","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-mediated electrochemical ammonia synthesis (LiMEAS) has recently shown promise toward efficient electrochemical ammonia production. This process relies on the formation of a lithium nitride film which is subsequently protonated to release ammonia. Designing the electrolyte for this technology requires the selection of a proton donor. In this work, we perform a first-principles analysis to investigate the initial step of nitride formation considering 30 different proton donors (PD). As a baseline, modeling nitrogen on a lithium surface without a PD, we observe that N2 does not spontaneously dissociate on the lithium surface. However, explicitly introducing a PD into the system results in five unique recurring nitrogen configurations on the lithium slab: (1) embedded, (2) adsorbed, (3) standing, (4) buried, and (5) transferred states. We show that these PD-induced states possess an elongated N–N bond and adsorb more strongly on lithium. Using charge analysis, we show that the charge transferred onto these states strongly correlates with the change in their bond length, a crucial parameter for nitrogen dissociation. These results suggest a more involved role of the PD in the initial stages of nitride formation, and motivate greater consideration for their impact on the LiMEAS pathway.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信