{"title":"Sorafenib enhanced the function of myeloid-derived suppressor cells in hepatocellular carcinoma by facilitating PPARα-mediated fatty acid oxidation","authors":"Chunxiao Li, Liting Xiong, Yuhan Yang, Ping Jiang, Junjie Wang, Mengyuan Li, Shuhua Wei, Suqing Tian, Yuexuan Wang, Mi Zhang, Jie Tang","doi":"10.1186/s12943-025-02238-5","DOIUrl":null,"url":null,"abstract":"Sorafenib, an FDA-approved drug for advanced hepatocellular carcinoma (HCC), faces resistance issues, partly due to myeloid-derived suppressor cells (MDSCs) that enhance immunosuppression in the tumor microenvironment (TME). Various murine HCC cell lines and MDSCs were used in a series of in vitro and in vivo experiments. These included subcutaneous tumor models, cell viability assays, flow cytometry, immunohistochemistry, and RNA sequencing. MDSCs were analyzed for chemotaxis, immunosuppressive functions, fatty acid oxidation (FAO), and PPARα expression. The impact of sorafenib on tumor growth, MDSC infiltration, differentiation, and immunosuppressive function was assessed, alongside the modulation of these processes by PPARα. Here, we revealed increased infiltration and enhanced function of MDSCs in TME after treatment with sorafenib. Moreover, our results indicated that sorafenib induced the accumulation of MDSCs mediated by CCR2, and pharmacological blockade of CCR2 markedly reduced MDSCs migration and tumor growth. Mechanistically, sorafenib promoted the effect and fatty acid uptake ability of MDSCs and modulated peroxisome proliferator-activated receptor α (PPARα)-mediated fatty acid oxidation (FAO). In addition, tumor-bearing mice fed a high-fat diet (HFD) at the beginning of sorafenib administration had worse outcomes than mice fed a regular diet. Genetic deficiency of PPARα weakens the effect of sorafenib on MDSCs in mice with HCC. Pharmacological inhibition of PPARα has a synergistic anti-tumor effect with sorafenib, which is attenuated by the inhibition of MDSCs. Mechanistically, sorafenib significantly inhibited the differentiation of macrophages by upregulating PPARα expression and suppressing the PU.1-CSF1R pathway. Overall, our study demonstrated that sorafenib enhanced the function of MDSCs by facilitating PPARα-mediated FAO and further augmenting sorafenib resistance, which sheds light on dietary management and improves the therapeutic response in HCC.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"45 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-025-02238-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sorafenib, an FDA-approved drug for advanced hepatocellular carcinoma (HCC), faces resistance issues, partly due to myeloid-derived suppressor cells (MDSCs) that enhance immunosuppression in the tumor microenvironment (TME). Various murine HCC cell lines and MDSCs were used in a series of in vitro and in vivo experiments. These included subcutaneous tumor models, cell viability assays, flow cytometry, immunohistochemistry, and RNA sequencing. MDSCs were analyzed for chemotaxis, immunosuppressive functions, fatty acid oxidation (FAO), and PPARα expression. The impact of sorafenib on tumor growth, MDSC infiltration, differentiation, and immunosuppressive function was assessed, alongside the modulation of these processes by PPARα. Here, we revealed increased infiltration and enhanced function of MDSCs in TME after treatment with sorafenib. Moreover, our results indicated that sorafenib induced the accumulation of MDSCs mediated by CCR2, and pharmacological blockade of CCR2 markedly reduced MDSCs migration and tumor growth. Mechanistically, sorafenib promoted the effect and fatty acid uptake ability of MDSCs and modulated peroxisome proliferator-activated receptor α (PPARα)-mediated fatty acid oxidation (FAO). In addition, tumor-bearing mice fed a high-fat diet (HFD) at the beginning of sorafenib administration had worse outcomes than mice fed a regular diet. Genetic deficiency of PPARα weakens the effect of sorafenib on MDSCs in mice with HCC. Pharmacological inhibition of PPARα has a synergistic anti-tumor effect with sorafenib, which is attenuated by the inhibition of MDSCs. Mechanistically, sorafenib significantly inhibited the differentiation of macrophages by upregulating PPARα expression and suppressing the PU.1-CSF1R pathway. Overall, our study demonstrated that sorafenib enhanced the function of MDSCs by facilitating PPARα-mediated FAO and further augmenting sorafenib resistance, which sheds light on dietary management and improves the therapeutic response in HCC.
期刊介绍:
Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer.
The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies.
Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.