Towards the next generation of Geospatial Artificial Intelligence

IF 7.5 1区 地球科学 Q1 Earth and Planetary Sciences
Gengchen Mai, Yiqun Xie, Xiaowei Jia, Ni Lao, Jinmeng Rao, Qing Zhu, Zeping Liu, Yao-Yi Chiang, Junfeng Jiao
{"title":"Towards the next generation of Geospatial Artificial Intelligence","authors":"Gengchen Mai, Yiqun Xie, Xiaowei Jia, Ni Lao, Jinmeng Rao, Qing Zhu, Zeping Liu, Yao-Yi Chiang, Junfeng Jiao","doi":"10.1016/j.jag.2025.104368","DOIUrl":null,"url":null,"abstract":"Geospatial Artificial Intelligence (GeoAI), as the integration of geospatial studies and AI, has become one of the fastest-developing research directions in spatial data science and geography. This rapid change in the field calls for a deeper understanding of the recent developments and envision where the field is going in the near future. In this work, we provide a quantitative analysis of the GeoAI literature from the spatial, temporal, and semantic aspects. We briefly discuss the history of AI and GeoAI by highlighting some pioneering work. Then we discuss the current landscape of GeoAI by selecting five representative subdomains including remote sensing, urban computing, Earth system science, cartography, and geospatial semantics. Finally, we highlight several unique future research directions of GeoAI which are classified into two groups: GeoAI method development challenges and GeoAI Ethics challenges. Topics include heterogeneity-aware GeoAI, knowledge-guided GeoAI, spatial representation learning, geo-foundation models, fairness-aware GeoAI, privacy-aware GeoAI, as well as interpretable and explainable GeoAI. We hope our review of GeoAI’s past, present, and future is comprehensive and can enlighten the next generation of GeoAI research.","PeriodicalId":50341,"journal":{"name":"International Journal of Applied Earth Observation and Geoinformation","volume":"3 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Earth Observation and Geoinformation","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jag.2025.104368","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Geospatial Artificial Intelligence (GeoAI), as the integration of geospatial studies and AI, has become one of the fastest-developing research directions in spatial data science and geography. This rapid change in the field calls for a deeper understanding of the recent developments and envision where the field is going in the near future. In this work, we provide a quantitative analysis of the GeoAI literature from the spatial, temporal, and semantic aspects. We briefly discuss the history of AI and GeoAI by highlighting some pioneering work. Then we discuss the current landscape of GeoAI by selecting five representative subdomains including remote sensing, urban computing, Earth system science, cartography, and geospatial semantics. Finally, we highlight several unique future research directions of GeoAI which are classified into two groups: GeoAI method development challenges and GeoAI Ethics challenges. Topics include heterogeneity-aware GeoAI, knowledge-guided GeoAI, spatial representation learning, geo-foundation models, fairness-aware GeoAI, privacy-aware GeoAI, as well as interpretable and explainable GeoAI. We hope our review of GeoAI’s past, present, and future is comprehensive and can enlighten the next generation of GeoAI research.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.20
自引率
8.00%
发文量
49
审稿时长
7.2 months
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信