Assessment and validation of Meteosat SEVIRI fire radiative power (FRP) retrievals over Kruger National Park

IF 7.6 Q1 REMOTE SENSING
Gareth Roberts , Martin. J. Wooster , Tercia Strydom
{"title":"Assessment and validation of Meteosat SEVIRI fire radiative power (FRP) retrievals over Kruger National Park","authors":"Gareth Roberts ,&nbsp;Martin. J. Wooster ,&nbsp;Tercia Strydom","doi":"10.1016/j.jag.2025.104375","DOIUrl":null,"url":null,"abstract":"<div><div>Satellite burned area, active fire and fire radiative power (FRP), are key to quantifying fire activity and are one of 54 essential climate variables (ECV) and it is important to validate these data to ensure their consistency. This study investigates some of the factors that influence FRP retrieval and uses Meteosat Spinning Enhanced Visible and InfraRed Imager (SEVIRI) data to do so. Analysis of the influence of a fire’s location within a SEVIRI pixel on FRP was carried out using fire simulations which indicate that FRP varies by up to 14 % at nadir for a single sensor and by up to 55 % when intercomparing simulated FRP from different SEVIRI sensors. Intercomparison between actual MET-11 and MET-08 FRP data on a per-pixel basis reveals a high degree of scatter (81.9 MW), strong correlation (R = 0.72), low bias (∼1 MW) and an average percentage difference of 15.7 %. Variability is reduced when aggregated to fire ‘clusters’ which improves the correlation (R = 0.96) and reduces the average percentage difference (4.2 %). Validation of MET-08 and MET-11 FRP retrievals using FRP from helicopter mounted longwave infrared (LWIR) and midwave infrared (MWIR) thermal cameras is carried out over five prescribed burns. The results reveal good agreement between the SEVIRI and thermal camera FRP although the SEVIRI FRP is typically overestimated compared to that from the LWIR camera. This study illustrates some of the challenges validating satellite FRP which should be accounted for when defining uncertainty thresholds for product requirements and in developing FRP validation protocols.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"136 ","pages":"Article 104375"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843225000226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

Satellite burned area, active fire and fire radiative power (FRP), are key to quantifying fire activity and are one of 54 essential climate variables (ECV) and it is important to validate these data to ensure their consistency. This study investigates some of the factors that influence FRP retrieval and uses Meteosat Spinning Enhanced Visible and InfraRed Imager (SEVIRI) data to do so. Analysis of the influence of a fire’s location within a SEVIRI pixel on FRP was carried out using fire simulations which indicate that FRP varies by up to 14 % at nadir for a single sensor and by up to 55 % when intercomparing simulated FRP from different SEVIRI sensors. Intercomparison between actual MET-11 and MET-08 FRP data on a per-pixel basis reveals a high degree of scatter (81.9 MW), strong correlation (R = 0.72), low bias (∼1 MW) and an average percentage difference of 15.7 %. Variability is reduced when aggregated to fire ‘clusters’ which improves the correlation (R = 0.96) and reduces the average percentage difference (4.2 %). Validation of MET-08 and MET-11 FRP retrievals using FRP from helicopter mounted longwave infrared (LWIR) and midwave infrared (MWIR) thermal cameras is carried out over five prescribed burns. The results reveal good agreement between the SEVIRI and thermal camera FRP although the SEVIRI FRP is typically overestimated compared to that from the LWIR camera. This study illustrates some of the challenges validating satellite FRP which should be accounted for when defining uncertainty thresholds for product requirements and in developing FRP validation protocols.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International journal of applied earth observation and geoinformation : ITC journal
International journal of applied earth observation and geoinformation : ITC journal Global and Planetary Change, Management, Monitoring, Policy and Law, Earth-Surface Processes, Computers in Earth Sciences
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
77 days
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信