CUG-STCN: A seabed topography classification framework based on knowledge graph-guided vision mamba network

IF 7.5 1区 地球科学 Q1 Earth and Planetary Sciences
Haoyi Wang, Weitao Chen, Xianju Li, Qianyong Liang, Xuwen Qin, Jun Li
{"title":"CUG-STCN: A seabed topography classification framework based on knowledge graph-guided vision mamba network","authors":"Haoyi Wang, Weitao Chen, Xianju Li, Qianyong Liang, Xuwen Qin, Jun Li","doi":"10.1016/j.jag.2025.104383","DOIUrl":null,"url":null,"abstract":"Multibeam sounding is a high-precision remote sensing method for seabed detection. Seabed topography classification is crucial for marine science research, resource exploration and engineering. When using multibeam data for seabed topography automatic classification, the fuzzy boundaries of different topographic entities, redundancy of multimodal data, and the lack of geological knowledge guidance have led to low classification accuracy. Thus, a knowledge graph-guided vision mamba seabed topography classification network (CUG-STCN) was constructed, consisting of three modules: (1) The long sequence modeling mamba-based encoder addresses the fuzzy seabed topography boundary. It uses 2D-selective-scan to create image blocks in different scanning directions. By combining with the selective state space model to capture long-range dependencies and ensure transmission of spatial context information while maintaining linear computational complexity. (2) The cross-modal information interaction and fusion module addresses the redundancy of multimodal information. By employing a bidirectional information interaction mechanism, it captures the correlations of seabed topography between different modalities and achieving feature fusion. (3) The seabed topography knowledge graph-guided semantic perception module guides the geological knowledge. It constructs seabed topography knowledge vectors through entity query and word embedding, using the similarity between vectors to create a similarity measurement matrix. It provides geological knowledge, enhancing the modeling capability of complex seabed topography relationship. CUG-STCN achieves OA of 90.11% and mIOU of 48.50%, outperforming six mainstream networks, which at most, achieve the OA and mIOU improvements of 5.37% and 14.18%. Notably, the application of CUG-STCN in other regions demonstrates its strong generalization performance.","PeriodicalId":50341,"journal":{"name":"International Journal of Applied Earth Observation and Geoinformation","volume":"530 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Earth Observation and Geoinformation","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jag.2025.104383","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Multibeam sounding is a high-precision remote sensing method for seabed detection. Seabed topography classification is crucial for marine science research, resource exploration and engineering. When using multibeam data for seabed topography automatic classification, the fuzzy boundaries of different topographic entities, redundancy of multimodal data, and the lack of geological knowledge guidance have led to low classification accuracy. Thus, a knowledge graph-guided vision mamba seabed topography classification network (CUG-STCN) was constructed, consisting of three modules: (1) The long sequence modeling mamba-based encoder addresses the fuzzy seabed topography boundary. It uses 2D-selective-scan to create image blocks in different scanning directions. By combining with the selective state space model to capture long-range dependencies and ensure transmission of spatial context information while maintaining linear computational complexity. (2) The cross-modal information interaction and fusion module addresses the redundancy of multimodal information. By employing a bidirectional information interaction mechanism, it captures the correlations of seabed topography between different modalities and achieving feature fusion. (3) The seabed topography knowledge graph-guided semantic perception module guides the geological knowledge. It constructs seabed topography knowledge vectors through entity query and word embedding, using the similarity between vectors to create a similarity measurement matrix. It provides geological knowledge, enhancing the modeling capability of complex seabed topography relationship. CUG-STCN achieves OA of 90.11% and mIOU of 48.50%, outperforming six mainstream networks, which at most, achieve the OA and mIOU improvements of 5.37% and 14.18%. Notably, the application of CUG-STCN in other regions demonstrates its strong generalization performance.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.20
自引率
8.00%
发文量
49
审稿时长
7.2 months
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信