Jianao Cai, Dongping Ming, Feng Liu, Xiao Ling, Ningjie Liu, Liang Zhang, Lu Xu, Yan Li, Mengyuan Zhu
{"title":"Change detection of slow-moving landslide with multi-source SBAS-InSAR and Light-U2Net","authors":"Jianao Cai, Dongping Ming, Feng Liu, Xiao Ling, Ningjie Liu, Liang Zhang, Lu Xu, Yan Li, Mengyuan Zhu","doi":"10.1016/j.jag.2025.104387","DOIUrl":null,"url":null,"abstract":"Interferometric Synthetic Aperture Radar (InSAR) techniques are commonly used approach for identifying Slow-moving Landslide (SML). However, most SML boundary identification with deep learning are based on single-source InSAR data, which cannot fully explore the dynamic process of destabilization, and are inefficient due to high model complexity. Meanwhile, research on automatic procession with multi-source InSAR data is few. To enhance efficiency in geohazard monitoring, this paper proposed an automatic framework for Boundary-Changed Slow-moving Landslide (BCSML) detection by integrating multi-source Small Baseline Subset InSAR (SBAS-InSAR), Convolutional Neural Network (CNN), and change detection methodologies. Firstly, surface deformation was estimated using multi-source SBAS-InSAR. Then, a novel and effective Light-U<ce:sup loc=\"post\">2</ce:sup>Net was constructed with decreased complexity to identify Significant Deformation Zone (SDZ) and locate SML candidate. Finally, BCSMLs were identified using a change detection approach based on newly defined geometric measurements. Two study areas were selected to test the model’s performance: Zayu County and the Nu-Lancang River parallel flow (NLPF) area (in China). The proposed Light-U<ce:sup loc=\"post\">2</ce:sup>Net model achieves high Precision (80.1 %), Recall (80.2 %), and F1-scores (80.1 %) in Zayu County. Additionally, the model’s complexity has reduced by 42.4 % without compromising identification accuracy compared to the original model. The pre-trained model was then applied to the NLPF area, and a total of 273 BCSMLs were detected, with 176 identified as expanding and 97 as shrinking. BCSML identification accuracy can reach to 90.47 %. The results have proved that the proposed framework with the Light-U<ce:sup loc=\"post\">2</ce:sup>Net model is effective and practically potential in landslide disaster prevention.","PeriodicalId":50341,"journal":{"name":"International Journal of Applied Earth Observation and Geoinformation","volume":"7 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Earth Observation and Geoinformation","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jag.2025.104387","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Interferometric Synthetic Aperture Radar (InSAR) techniques are commonly used approach for identifying Slow-moving Landslide (SML). However, most SML boundary identification with deep learning are based on single-source InSAR data, which cannot fully explore the dynamic process of destabilization, and are inefficient due to high model complexity. Meanwhile, research on automatic procession with multi-source InSAR data is few. To enhance efficiency in geohazard monitoring, this paper proposed an automatic framework for Boundary-Changed Slow-moving Landslide (BCSML) detection by integrating multi-source Small Baseline Subset InSAR (SBAS-InSAR), Convolutional Neural Network (CNN), and change detection methodologies. Firstly, surface deformation was estimated using multi-source SBAS-InSAR. Then, a novel and effective Light-U2Net was constructed with decreased complexity to identify Significant Deformation Zone (SDZ) and locate SML candidate. Finally, BCSMLs were identified using a change detection approach based on newly defined geometric measurements. Two study areas were selected to test the model’s performance: Zayu County and the Nu-Lancang River parallel flow (NLPF) area (in China). The proposed Light-U2Net model achieves high Precision (80.1 %), Recall (80.2 %), and F1-scores (80.1 %) in Zayu County. Additionally, the model’s complexity has reduced by 42.4 % without compromising identification accuracy compared to the original model. The pre-trained model was then applied to the NLPF area, and a total of 273 BCSMLs were detected, with 176 identified as expanding and 97 as shrinking. BCSML identification accuracy can reach to 90.47 %. The results have proved that the proposed framework with the Light-U2Net model is effective and practically potential in landslide disaster prevention.
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.