Zhimin Zhao;Abdul Ali Bangash;Filipe Roseiro Côgo;Bram Adams;Ahmed E. Hassan
{"title":"On the Workflows and Smells of Leaderboard Operations (LBOps): An Exploratory Study of Foundation Model Leaderboards","authors":"Zhimin Zhao;Abdul Ali Bangash;Filipe Roseiro Côgo;Bram Adams;Ahmed E. Hassan","doi":"10.1109/TSE.2025.3533972","DOIUrl":null,"url":null,"abstract":"Foundation models (FM), such as large language models (LLMs), which are large-scale machine learning (ML) models, have demonstrated remarkable adaptability in various downstream software engineering (SE) tasks, such as code completion, code understanding, and software development. As a result, FM leaderboards have become essential tools for SE teams to compare and select the best third-party FMs for their specific products and purposes. However, the lack of standardized guidelines for FM evaluation and comparison threatens the transparency of FM leaderboards and limits stakeholders’ ability to perform effective FM selection. As a first step towards addressing this challenge, our research focuses on understanding how these FM leaderboards operate in real-world scenarios (“leaderboard operations”) and identifying potential pitfalls and areas for improvement (“leaderboard smells”). In this regard, we collect up to <inline-formula><tex-math>$1,045$</tex-math></inline-formula> FM leaderboards from five different sources: GitHub, Hugging Face Spaces, Papers With Code, spreadsheet and independent platform, to examine their documentation and engage in direct communication with leaderboard operators to understand their workflows. Through card sorting and negotiated agreement, we identify five distinct workflow patterns and develop a domain model that captures the key components and their interactions within these workflows. We then identify eight unique types of leaderboard smells in LBOps. By mitigating these smells, SE teams can improve transparency, accountability, and collaboration in current LBOps practices, fostering a more robust and responsible ecosystem for FM comparison and selection.","PeriodicalId":13324,"journal":{"name":"IEEE Transactions on Software Engineering","volume":"51 4","pages":"929-946"},"PeriodicalIF":6.5000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10855627/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Foundation models (FM), such as large language models (LLMs), which are large-scale machine learning (ML) models, have demonstrated remarkable adaptability in various downstream software engineering (SE) tasks, such as code completion, code understanding, and software development. As a result, FM leaderboards have become essential tools for SE teams to compare and select the best third-party FMs for their specific products and purposes. However, the lack of standardized guidelines for FM evaluation and comparison threatens the transparency of FM leaderboards and limits stakeholders’ ability to perform effective FM selection. As a first step towards addressing this challenge, our research focuses on understanding how these FM leaderboards operate in real-world scenarios (“leaderboard operations”) and identifying potential pitfalls and areas for improvement (“leaderboard smells”). In this regard, we collect up to $1,045$ FM leaderboards from five different sources: GitHub, Hugging Face Spaces, Papers With Code, spreadsheet and independent platform, to examine their documentation and engage in direct communication with leaderboard operators to understand their workflows. Through card sorting and negotiated agreement, we identify five distinct workflow patterns and develop a domain model that captures the key components and their interactions within these workflows. We then identify eight unique types of leaderboard smells in LBOps. By mitigating these smells, SE teams can improve transparency, accountability, and collaboration in current LBOps practices, fostering a more robust and responsible ecosystem for FM comparison and selection.
期刊介绍:
IEEE Transactions on Software Engineering seeks contributions comprising well-defined theoretical results and empirical studies with potential impacts on software construction, analysis, or management. The scope of this Transactions extends from fundamental mechanisms to the development of principles and their application in specific environments. Specific topic areas include:
a) Development and maintenance methods and models: Techniques and principles for specifying, designing, and implementing software systems, encompassing notations and process models.
b) Assessment methods: Software tests, validation, reliability models, test and diagnosis procedures, software redundancy, design for error control, and measurements and evaluation of process and product aspects.
c) Software project management: Productivity factors, cost models, schedule and organizational issues, and standards.
d) Tools and environments: Specific tools, integrated tool environments, associated architectures, databases, and parallel and distributed processing issues.
e) System issues: Hardware-software trade-offs.
f) State-of-the-art surveys: Syntheses and comprehensive reviews of the historical development within specific areas of interest.