UAV-assisted Internet of vehicles: A framework empowered by reinforcement learning and Blockchain

IF 5.8 2区 计算机科学 Q1 TELECOMMUNICATIONS
Ahmed Alagha, Maha Kadadha, Rabeb Mizouni, Shakti Singh, Jamal Bentahar, Hadi Otrok
{"title":"UAV-assisted Internet of vehicles: A framework empowered by reinforcement learning and Blockchain","authors":"Ahmed Alagha, Maha Kadadha, Rabeb Mizouni, Shakti Singh, Jamal Bentahar, Hadi Otrok","doi":"10.1016/j.vehcom.2025.100874","DOIUrl":null,"url":null,"abstract":"This paper addresses the challenges of selecting relay nodes and coordinating among them in UAV-assisted Internet-of-Vehicles (IoV). Recently, UAVs have gained popularity as relay nodes to complement vehicles in IoV networks due to their ability to extend coverage through unbounded movement and superior communication capabilities. The selection of UAV relay nodes in IoV employs mechanisms executed either at centralized servers or decentralized nodes, which have two main limitations: 1) the traceability of the selection mechanism execution and 2) the coordination among the selected UAVs, which is currently offered in a centralized manner and is not coupled with the relay selection. Existing UAV coordination methods often rely on optimization methods, which are not adaptable to different environment complexities, or on centralized deep reinforcement learning, which lacks scalability in multi-UAV settings. Overall, there is a need for a comprehensive framework where relay selection and coordination processes are coupled and executed in a transparent and trusted manner. This work proposes a framework empowered by reinforcement learning and Blockchain for UAV-assisted IoV networks. It consists of three main components: a two-sided UAV relay selection mechanism for UAV-assisted IoV, a decentralized Multi-Agent Deep Reinforcement Learning (MDRL) model for efficient and autonomous UAV coordination, and finally, a Blockchain implementation for transparency and traceability in the interactions between vehicles and UAVs. The relay selection considers the two-sided preferences of vehicles and UAVs based on the Quality-of-UAV (QoU) and the Quality-of-Vehicle (QoV). Upon selection of relay UAVs, the coordination between the selected UAVs is enabled through an MDRL model trained to control their mobility and maintain the network coverage and connectivity using Proximal Policy Optimization (PPO). MDRL offers decentralized control and intelligent decision-making for the UAVs to maintain coverage and connectivity over the assigned vehicles. The evaluation results demonstrate that the proposed selection mechanism improves the stability of the selected relays, while MDRL maximizes the coverage and connectivity achieved by the UAVs. Both methods show superior performance compared to several benchmarks.","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"38 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.vehcom.2025.100874","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the challenges of selecting relay nodes and coordinating among them in UAV-assisted Internet-of-Vehicles (IoV). Recently, UAVs have gained popularity as relay nodes to complement vehicles in IoV networks due to their ability to extend coverage through unbounded movement and superior communication capabilities. The selection of UAV relay nodes in IoV employs mechanisms executed either at centralized servers or decentralized nodes, which have two main limitations: 1) the traceability of the selection mechanism execution and 2) the coordination among the selected UAVs, which is currently offered in a centralized manner and is not coupled with the relay selection. Existing UAV coordination methods often rely on optimization methods, which are not adaptable to different environment complexities, or on centralized deep reinforcement learning, which lacks scalability in multi-UAV settings. Overall, there is a need for a comprehensive framework where relay selection and coordination processes are coupled and executed in a transparent and trusted manner. This work proposes a framework empowered by reinforcement learning and Blockchain for UAV-assisted IoV networks. It consists of three main components: a two-sided UAV relay selection mechanism for UAV-assisted IoV, a decentralized Multi-Agent Deep Reinforcement Learning (MDRL) model for efficient and autonomous UAV coordination, and finally, a Blockchain implementation for transparency and traceability in the interactions between vehicles and UAVs. The relay selection considers the two-sided preferences of vehicles and UAVs based on the Quality-of-UAV (QoU) and the Quality-of-Vehicle (QoV). Upon selection of relay UAVs, the coordination between the selected UAVs is enabled through an MDRL model trained to control their mobility and maintain the network coverage and connectivity using Proximal Policy Optimization (PPO). MDRL offers decentralized control and intelligent decision-making for the UAVs to maintain coverage and connectivity over the assigned vehicles. The evaluation results demonstrate that the proposed selection mechanism improves the stability of the selected relays, while MDRL maximizes the coverage and connectivity achieved by the UAVs. Both methods show superior performance compared to several benchmarks.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Vehicular Communications
Vehicular Communications Engineering-Electrical and Electronic Engineering
CiteScore
12.70
自引率
10.40%
发文量
88
审稿时长
62 days
期刊介绍: Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier. The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications: Vehicle to vehicle and vehicle to infrastructure communications Channel modelling, modulating and coding Congestion Control and scalability issues Protocol design, testing and verification Routing in vehicular networks Security issues and countermeasures Deployment and field testing Reducing energy consumption and enhancing safety of vehicles Wireless in–car networks Data collection and dissemination methods Mobility and handover issues Safety and driver assistance applications UAV Underwater communications Autonomous cooperative driving Social networks Internet of vehicles Standardization of protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信