Age-dependent differences in breast tumor microenvironment: challenges and opportunities for efficacy studies in preclinical models

IF 13.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Paolo Falvo, Stephan Gruener, Stefania Orecchioni, Federica Pisati, Giovanna Talarico, Giulia Mitola, Davide Lombardi, Giulia Bravetti, Juliane Winkler, Iros Barozzi, Francesco Bertolini
{"title":"Age-dependent differences in breast tumor microenvironment: challenges and opportunities for efficacy studies in preclinical models","authors":"Paolo Falvo, Stephan Gruener, Stefania Orecchioni, Federica Pisati, Giovanna Talarico, Giulia Mitola, Davide Lombardi, Giulia Bravetti, Juliane Winkler, Iros Barozzi, Francesco Bertolini","doi":"10.1038/s41418-025-01447-1","DOIUrl":null,"url":null,"abstract":"<p>Immunity suffers a function deficit during aging, and the incidence of cancer is increased in the elderly. However, most cancer models employ young mice, which are poorly representative of adult cancer patients. We have previously reported that Triple-Therapy (TT), involving antigen-presenting-cell activation by vinorelbine and generation of TCF1<sup>+</sup>-stem-cell-like T cells (scTs) by cyclophosphamide significantly improved anti-PD-1 efficacy in anti-PD1-resistant models like Triple-Negative Breast Cancer (TNBC) and Non-Hodgkin’s Lymphoma (NHL), due to T-cell-mediated tumor killing. Here, we describe the effect of TT on TNBC growth and on tumor-microenvironment (TME) of young (6–8w, representative of human puberty) versus adult (12 m, representative of 40y-humans) mice. TT-efficacy was similar in young and adults, as CD8<sup>+</sup> scTs were only marginally reduced in adults. However, single-cell analyses revealed major differences in the TME: adults had fewer CD4<sup>+</sup> scTs, B-naïve and NK-cells, and more memory-B-cells. Cancer-associated-fibroblasts (CAF) with an Extracellular Matrix (ECM) deposition-signature (Matrix-CAFs) were more common in young mice, while pro-inflammatory stromal populations and myofibroblasts were more represented in adults. Matrix-CAFs in adult mice displayed decreased ECM-remodeling abilities, reduced collagen deposition, and a different pattern of interactions with the other cells of the TME. Taken together, our results suggest that age-dependent differences in the TME should be considered when designing preclinical studies.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"59 1","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death and Differentiation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41418-025-01447-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Immunity suffers a function deficit during aging, and the incidence of cancer is increased in the elderly. However, most cancer models employ young mice, which are poorly representative of adult cancer patients. We have previously reported that Triple-Therapy (TT), involving antigen-presenting-cell activation by vinorelbine and generation of TCF1+-stem-cell-like T cells (scTs) by cyclophosphamide significantly improved anti-PD-1 efficacy in anti-PD1-resistant models like Triple-Negative Breast Cancer (TNBC) and Non-Hodgkin’s Lymphoma (NHL), due to T-cell-mediated tumor killing. Here, we describe the effect of TT on TNBC growth and on tumor-microenvironment (TME) of young (6–8w, representative of human puberty) versus adult (12 m, representative of 40y-humans) mice. TT-efficacy was similar in young and adults, as CD8+ scTs were only marginally reduced in adults. However, single-cell analyses revealed major differences in the TME: adults had fewer CD4+ scTs, B-naïve and NK-cells, and more memory-B-cells. Cancer-associated-fibroblasts (CAF) with an Extracellular Matrix (ECM) deposition-signature (Matrix-CAFs) were more common in young mice, while pro-inflammatory stromal populations and myofibroblasts were more represented in adults. Matrix-CAFs in adult mice displayed decreased ECM-remodeling abilities, reduced collagen deposition, and a different pattern of interactions with the other cells of the TME. Taken together, our results suggest that age-dependent differences in the TME should be considered when designing preclinical studies.

Abstract Image

乳腺肿瘤微环境的年龄依赖性差异:临床前模型疗效研究的挑战和机遇
随着年龄的增长,免疫功能出现缺陷,癌症的发病率在老年人中增加。然而,大多数癌症模型使用的是年轻的老鼠,这很难代表成年癌症患者。我们之前报道过三联疗法(TT),包括用vinorelbine激活抗原呈递细胞和用环磷酰胺生成TCF1+干细胞样T细胞(scTs),由于T细胞介导的肿瘤杀伤,显著提高了抗pd -1耐药模型(如三阴性乳腺癌(TNBC)和非霍奇金淋巴瘤(NHL))的抗pd -1疗效。在这里,我们描述了TT对幼年小鼠(6-8w,代表人类青春期)和成年小鼠(12 m,代表40岁人类)TNBC生长和肿瘤微环境(TME)的影响。tt在年轻人和成人中的疗效相似,因为CD8+ sct在成人中仅略有降低。然而,单细胞分析揭示了TME的主要差异:成人CD4+ sct, B-naïve和nk细胞较少,记忆b细胞较多。具有细胞外基质(ECM)沉积特征(Matrix- cafs)的癌症相关成纤维细胞(CAF)在年轻小鼠中更常见,而促炎基质群体和肌成纤维细胞在成年小鼠中更有代表性。成年小鼠的基质- cafs表现出ecm重塑能力下降、胶原沉积减少以及与TME其他细胞相互作用的不同模式。综上所述,我们的结果表明,在设计临床前研究时应考虑TME的年龄依赖性差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Death and Differentiation
Cell Death and Differentiation 生物-生化与分子生物学
CiteScore
24.70
自引率
1.60%
发文量
181
审稿时长
3 months
期刊介绍: Mission, vision and values of Cell Death & Differentiation: To devote itself to scientific excellence in the field of cell biology, molecular biology, and biochemistry of cell death and disease. To provide a unified forum for scientists and clinical researchers It is committed to the rapid publication of high quality original papers relating to these subjects, together with topical, usually solicited, reviews, meeting reports, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信