YAP/TEAD4/SP1-induced VISTA expression as a tumor cell-intrinsic mechanism of immunosuppression in colorectal cancer

IF 13.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Zhehui Zhu, Rui Ding, Wei Yu, Yun Liu, Zhaocai Zhou, Chen-Ying Liu
{"title":"YAP/TEAD4/SP1-induced VISTA expression as a tumor cell-intrinsic mechanism of immunosuppression in colorectal cancer","authors":"Zhehui Zhu, Rui Ding, Wei Yu, Yun Liu, Zhaocai Zhou, Chen-Ying Liu","doi":"10.1038/s41418-025-01446-2","DOIUrl":null,"url":null,"abstract":"<p>Hyperactivation of the YAP/TEAD transcriptional complex in cancers facilitates the development of an immunosuppressive tumor microenvironment. Herein, we observed that the transcription factor SP1 physically interacts with and stabilizes the YAP/TEAD complex at regulatory genomic loci in colorectal cancer (CRC). In response to serum stimulation, PKCζ (protein kinase C ζ) was found to phosphorylate SP1 and enhance its interaction with TEAD4. As a result, SP1 enhanced the transcriptional activity of YAP/TEAD and coregulated the expression of a group of YAP/TEAD target genes. The immune checkpoint V-domain Ig suppressor of T-cell activation (VISTA) was identified as a direct target of the SP1-YAP/TEAD4 complex and found to be widely expressed in CRC cells. Importantly, YAP-induced VISTA upregulation in human CRC cells was found to strongly suppress the antitumor function of CD8<sup>+</sup> T cells. Consistently, elevated VISTA expression was found to be correlated with hyperactivation of the SP1-YAP/TEAD axis and associated with poor prognosis of CRC patients. In addition, we found by serendipity that enzymatic deglycosylation significantly improved the anti-VISTA antibody signal intensity, resulting in more accurate detection of VISTA in clinical tumor samples. Overall, our study identified SP1 as a positive modulator of YAP/TEAD for the transcriptional regulation of VISTA and developed a protein deglycosylation strategy to better detect VISTA expression in clinical samples. These findings revealed a new tumor cell-intrinsic mechanism of YAP/TAZ-mediated cancer immune evasion.</p><figure></figure>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"25 1","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death and Differentiation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41418-025-01446-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperactivation of the YAP/TEAD transcriptional complex in cancers facilitates the development of an immunosuppressive tumor microenvironment. Herein, we observed that the transcription factor SP1 physically interacts with and stabilizes the YAP/TEAD complex at regulatory genomic loci in colorectal cancer (CRC). In response to serum stimulation, PKCζ (protein kinase C ζ) was found to phosphorylate SP1 and enhance its interaction with TEAD4. As a result, SP1 enhanced the transcriptional activity of YAP/TEAD and coregulated the expression of a group of YAP/TEAD target genes. The immune checkpoint V-domain Ig suppressor of T-cell activation (VISTA) was identified as a direct target of the SP1-YAP/TEAD4 complex and found to be widely expressed in CRC cells. Importantly, YAP-induced VISTA upregulation in human CRC cells was found to strongly suppress the antitumor function of CD8+ T cells. Consistently, elevated VISTA expression was found to be correlated with hyperactivation of the SP1-YAP/TEAD axis and associated with poor prognosis of CRC patients. In addition, we found by serendipity that enzymatic deglycosylation significantly improved the anti-VISTA antibody signal intensity, resulting in more accurate detection of VISTA in clinical tumor samples. Overall, our study identified SP1 as a positive modulator of YAP/TEAD for the transcriptional regulation of VISTA and developed a protein deglycosylation strategy to better detect VISTA expression in clinical samples. These findings revealed a new tumor cell-intrinsic mechanism of YAP/TAZ-mediated cancer immune evasion.

Abstract Image

YAP/TEAD4/ sp1诱导的VISTA表达作为结直肠癌免疫抑制的肿瘤细胞内在机制
癌症中YAP/TEAD转录复合物的过度激活促进了免疫抑制肿瘤微环境的发展。在此,我们观察到转录因子SP1与结直肠癌(CRC)调节基因组位点上的YAP/TEAD复合物的物理相互作用并使其稳定。在对血清刺激的反应中,PKCζ(蛋白激酶Cζ)被发现磷酸化SP1并增强其与TEAD4的相互作用。结果表明,SP1增强了YAP/TEAD的转录活性,并协同调控了一组YAP/TEAD靶基因的表达。免疫检查点v域t细胞活化Ig抑制因子(VISTA)被确定为SP1-YAP/TEAD4复合物的直接靶点,并在结直肠癌细胞中广泛表达。重要的是,yap在人CRC细胞中诱导的VISTA上调被发现强烈抑制CD8+ T细胞的抗肿瘤功能。同样,研究发现VISTA表达升高与SP1-YAP/TEAD轴的过度激活相关,并与CRC患者的不良预后相关。此外,我们偶然发现,酶解去糖基化显著提高了抗VISTA抗体的信号强度,从而在临床肿瘤样本中更准确地检测到VISTA。总的来说,我们的研究确定SP1是YAP/TEAD转录调控VISTA的正调节因子,并开发了一种蛋白质去糖基化策略来更好地检测VISTA在临床样品中的表达。这些发现揭示了YAP/ taz介导的肿瘤免疫逃避的一种新的肿瘤细胞内在机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Death and Differentiation
Cell Death and Differentiation 生物-生化与分子生物学
CiteScore
24.70
自引率
1.60%
发文量
181
审稿时长
3 months
期刊介绍: Mission, vision and values of Cell Death & Differentiation: To devote itself to scientific excellence in the field of cell biology, molecular biology, and biochemistry of cell death and disease. To provide a unified forum for scientists and clinical researchers It is committed to the rapid publication of high quality original papers relating to these subjects, together with topical, usually solicited, reviews, meeting reports, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信