Age-related p53 SUMOylation accelerates senescence and tau pathology in Alzheimer’s disease

IF 13.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Lu Wan, Fumin Yang, Anqi Yin, Yong Luo, Yi Liu, Fei Liu, Jian-Zhi Wang, Rong Liu, Xiaochuan Wang
{"title":"Age-related p53 SUMOylation accelerates senescence and tau pathology in Alzheimer’s disease","authors":"Lu Wan, Fumin Yang, Anqi Yin, Yong Luo, Yi Liu, Fei Liu, Jian-Zhi Wang, Rong Liu, Xiaochuan Wang","doi":"10.1038/s41418-025-01448-0","DOIUrl":null,"url":null,"abstract":"<p>Aging is a major risk factor for Alzheimer’s disease (AD). With the prevalence of AD increased, a mechanistic linkage between aging and the pathogenesis of AD needs to be further addressed. Here, we report that a small ubiquitin-related modifier (SUMO) modification of p53 is implicated in the process which remarkably increased in AD patient’s brain. Mechanistically, SUMOylation of p53 at K386 residue causes the dissociation of SET/p53 complex, thus releasing SET into the cytoplasm, SET further interacts with cytoplasmic PP2A and inhibits its activity, resulting in tau hyperphosphorylation in neurons. In addition, SUMOylation of p53 promotes the p53 Ser15 phosphorylation that mediates neuronal senescence. Notably, p53 SUMOylation contributes to synaptic damage and cognitive defects in AD model mice. We also demonstrate that the SUMOylation inhibiter, Ginkgolic acid, recovering several senescent phenotypes drove by p53 SUMOylation in primary neurons. These findings suggest a previously undiscovered etiopathogenic relationship between aging and AD that is linked to p53 SUMOylation and the potential of SUMOylated p53-based therapeutics for neurodegeneration such as Alzheimer’s disease.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"20 1","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death and Differentiation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41418-025-01448-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aging is a major risk factor for Alzheimer’s disease (AD). With the prevalence of AD increased, a mechanistic linkage between aging and the pathogenesis of AD needs to be further addressed. Here, we report that a small ubiquitin-related modifier (SUMO) modification of p53 is implicated in the process which remarkably increased in AD patient’s brain. Mechanistically, SUMOylation of p53 at K386 residue causes the dissociation of SET/p53 complex, thus releasing SET into the cytoplasm, SET further interacts with cytoplasmic PP2A and inhibits its activity, resulting in tau hyperphosphorylation in neurons. In addition, SUMOylation of p53 promotes the p53 Ser15 phosphorylation that mediates neuronal senescence. Notably, p53 SUMOylation contributes to synaptic damage and cognitive defects in AD model mice. We also demonstrate that the SUMOylation inhibiter, Ginkgolic acid, recovering several senescent phenotypes drove by p53 SUMOylation in primary neurons. These findings suggest a previously undiscovered etiopathogenic relationship between aging and AD that is linked to p53 SUMOylation and the potential of SUMOylated p53-based therapeutics for neurodegeneration such as Alzheimer’s disease.

Abstract Image

年龄相关的p53 SUMOylation加速阿尔茨海默病的衰老和tau病理
衰老是阿尔茨海默病(AD)的主要危险因素。随着AD患病率的增加,衰老与AD发病机制之间的机制联系有待进一步研究。在这里,我们报道了一个小的泛素相关修饰子(SUMO)修饰p53参与了在AD患者大脑中显著增加的过程。机制上,p53在K386残基处的SUMOylation导致SET/p53复合物解离,从而将SET释放到细胞质中,SET进一步与细胞质PP2A相互作用并抑制其活性,导致神经元中tau过度磷酸化。此外,p53的SUMOylation促进p53 Ser15磷酸化,介导神经元衰老。值得注意的是,p53 summoylation有助于AD模型小鼠的突触损伤和认知缺陷。我们还证明了sumo化抑制剂银杏酸可以恢复原代神经元中由p53 sumo化驱动的几种衰老表型。这些发现表明,衰老和AD之间存在一种以前未被发现的致病关系,这种关系与p53的SUMOylation以及基于SUMOylation的p53治疗阿尔茨海默病等神经退行性疾病的潜力有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Death and Differentiation
Cell Death and Differentiation 生物-生化与分子生物学
CiteScore
24.70
自引率
1.60%
发文量
181
审稿时长
3 months
期刊介绍: Mission, vision and values of Cell Death & Differentiation: To devote itself to scientific excellence in the field of cell biology, molecular biology, and biochemistry of cell death and disease. To provide a unified forum for scientists and clinical researchers It is committed to the rapid publication of high quality original papers relating to these subjects, together with topical, usually solicited, reviews, meeting reports, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信