Zhiyang Liu, Liuhuan Li, Xiao Zhang, Wan Tang, Zhen Yang, Ximin Yang
{"title":"Considering both energy effectiveness and flight safety in UAV trajectory planning for intelligent logistics","authors":"Zhiyang Liu, Liuhuan Li, Xiao Zhang, Wan Tang, Zhen Yang, Ximin Yang","doi":"10.1016/j.vehcom.2025.100885","DOIUrl":null,"url":null,"abstract":"In low-altitude economic logistics scenarios, trajectory planning for unmanned aerial vehicles (UAVs) can be treated as a typical traveling salesman problem (TSP). High-rise buildings in urban areas not only severely impact the flight safety of UAVs, but also increase their energy consumption when avoiding obstacles, thereby affecting their delivery ranges. To address these issues, this paper proposes a two-stage trajectory planning solution called ACO-DQN-TP for logistics UAVs. In the first stage, the ant colony optimization (ACO) algorithm is applied to solve the sequence for multi-target point deliveries, to obtain the optimal flight paths. The ant tabu table is reopened to allow for retracing of the movement paths in order to avoid forward search dilemmas. In the second stage, a deep Q-network (DQN) is combined with the traditional artificial potential field method to enhance the interaction between UAVs and their environment. The rewards are accumulated using two potential functions generated based on the target points and obstacles, to minimize the changes in the yaw angles and smooth the flight trajectory of the UAV. Simulation experiments were conducted on UAV trajectory planning for delivery missions with four to ten target points. The simulation results show that the average path length obtained by ACO-DQN-TP is 65% and 79% shorter than that of Greedy+DQNPF and BACO, respectively, and the sum of turning angles along the path is 56% of Greedy DQNPF and 72% of BACO on average. It indicates that the proposed ACO-DQN-TP scheme not only optimizes delivery routes compared to traditional ACOs but also effectively controls the magnitude of the changes in heading angle during flight. This ensures flight safety for the UAV through obstacle avoidance while reducing flight energy consumption. In particular, the heading angle optimization mechanism proposed in this paper has universal guiding significance for low-altitude flights in the areas of traffic and transportation using UAVs.","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"158 3 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.vehcom.2025.100885","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In low-altitude economic logistics scenarios, trajectory planning for unmanned aerial vehicles (UAVs) can be treated as a typical traveling salesman problem (TSP). High-rise buildings in urban areas not only severely impact the flight safety of UAVs, but also increase their energy consumption when avoiding obstacles, thereby affecting their delivery ranges. To address these issues, this paper proposes a two-stage trajectory planning solution called ACO-DQN-TP for logistics UAVs. In the first stage, the ant colony optimization (ACO) algorithm is applied to solve the sequence for multi-target point deliveries, to obtain the optimal flight paths. The ant tabu table is reopened to allow for retracing of the movement paths in order to avoid forward search dilemmas. In the second stage, a deep Q-network (DQN) is combined with the traditional artificial potential field method to enhance the interaction between UAVs and their environment. The rewards are accumulated using two potential functions generated based on the target points and obstacles, to minimize the changes in the yaw angles and smooth the flight trajectory of the UAV. Simulation experiments were conducted on UAV trajectory planning for delivery missions with four to ten target points. The simulation results show that the average path length obtained by ACO-DQN-TP is 65% and 79% shorter than that of Greedy+DQNPF and BACO, respectively, and the sum of turning angles along the path is 56% of Greedy DQNPF and 72% of BACO on average. It indicates that the proposed ACO-DQN-TP scheme not only optimizes delivery routes compared to traditional ACOs but also effectively controls the magnitude of the changes in heading angle during flight. This ensures flight safety for the UAV through obstacle avoidance while reducing flight energy consumption. In particular, the heading angle optimization mechanism proposed in this paper has universal guiding significance for low-altitude flights in the areas of traffic and transportation using UAVs.
期刊介绍:
Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier.
The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications:
Vehicle to vehicle and vehicle to infrastructure communications
Channel modelling, modulating and coding
Congestion Control and scalability issues
Protocol design, testing and verification
Routing in vehicular networks
Security issues and countermeasures
Deployment and field testing
Reducing energy consumption and enhancing safety of vehicles
Wireless in–car networks
Data collection and dissemination methods
Mobility and handover issues
Safety and driver assistance applications
UAV
Underwater communications
Autonomous cooperative driving
Social networks
Internet of vehicles
Standardization of protocols.