Shin Nishio, Nicholas Connolly, Nicolò Lo Piparo, William John Munro, Thomas Rowan Scruby, Kae Nemoto
{"title":"Multiplexed Quantum Communication with Surface and Hypergraph Product Codes","authors":"Shin Nishio, Nicholas Connolly, Nicolò Lo Piparo, William John Munro, Thomas Rowan Scruby, Kae Nemoto","doi":"10.22331/q-2025-01-28-1613","DOIUrl":null,"url":null,"abstract":"Connecting multiple processors via quantum interconnect technologies could help overcome scalability issues in single-processor quantum computers. Transmission via these interconnects can be performed more efficiently using quantum multiplexing, where information is encoded in high-dimensional photonic degrees of freedom. We explore the effects of multiplexing on logical error rates in surface codes and hypergraph product codes. We show that, although multiplexing makes loss errors more damaging, assigning qubits to photons in an intelligent manner can minimize these effects, and the ability to encode higher-distance codes in a smaller number of photons can result in overall lower logical error rates. This multiplexing technique can also be adapted to quantum communication and multimode quantum memory with high-dimensional qudit systems.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"26 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-01-28-1613","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Connecting multiple processors via quantum interconnect technologies could help overcome scalability issues in single-processor quantum computers. Transmission via these interconnects can be performed more efficiently using quantum multiplexing, where information is encoded in high-dimensional photonic degrees of freedom. We explore the effects of multiplexing on logical error rates in surface codes and hypergraph product codes. We show that, although multiplexing makes loss errors more damaging, assigning qubits to photons in an intelligent manner can minimize these effects, and the ability to encode higher-distance codes in a smaller number of photons can result in overall lower logical error rates. This multiplexing technique can also be adapted to quantum communication and multimode quantum memory with high-dimensional qudit systems.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.