{"title":"MM-SCS: Leveraging Multimodal Features to Enhance Smart Contract Code Search","authors":"Chaochen Shi;Yong Xiang;Jiangshan Yu;Longxiang Gao","doi":"10.1109/TSE.2025.3531692","DOIUrl":null,"url":null,"abstract":"Semantic code search technology allows searching for existing code snippets through natural language, which can greatly improve programming efficiency. Smart contracts, programs that run on the blockchain, have a code reuse rate of more than 79%, which means developers have a great demand for semantic code search tools. However, the existing code search models still have a semantic gap between code and query and perform poorly on specialized queries of smart contracts. In this paper, we propose a Multi-Modal Smart contract Code Search (MM-SCS) model. Specifically, we construct a Contract Elements Dependency Graph (CEDG) for MM-SCS as an additional modality to capture the data flow and control flow information of the code. To make the model more focused on the key contextual information, we use a multi-head attention network to generate embeddings for code features. In addition, we use a fine-tuned pretrained model to ensure the model's effectiveness when the training data is small. We compared MM-SCS with four state-of-the-art models on a dataset with 470K (code, docstring) pairs collected from Github and Etherscan. Experimental results show that MM-SCS achieves an MRR (Mean Reciprocal Rank) of 0.572, outperforming four state-of-the-art models UNIF, DeepCS, CARLCS-CNN, and TAB-CS by 34.2%, 59.3%, 36.8%, and 14.1%, respectively. Additionally, the search speed of MM-SCS is second only to UNIF, reaching 0.34s/query.","PeriodicalId":13324,"journal":{"name":"IEEE Transactions on Software Engineering","volume":"51 2","pages":"638-649"},"PeriodicalIF":6.5000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10855358/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Semantic code search technology allows searching for existing code snippets through natural language, which can greatly improve programming efficiency. Smart contracts, programs that run on the blockchain, have a code reuse rate of more than 79%, which means developers have a great demand for semantic code search tools. However, the existing code search models still have a semantic gap between code and query and perform poorly on specialized queries of smart contracts. In this paper, we propose a Multi-Modal Smart contract Code Search (MM-SCS) model. Specifically, we construct a Contract Elements Dependency Graph (CEDG) for MM-SCS as an additional modality to capture the data flow and control flow information of the code. To make the model more focused on the key contextual information, we use a multi-head attention network to generate embeddings for code features. In addition, we use a fine-tuned pretrained model to ensure the model's effectiveness when the training data is small. We compared MM-SCS with four state-of-the-art models on a dataset with 470K (code, docstring) pairs collected from Github and Etherscan. Experimental results show that MM-SCS achieves an MRR (Mean Reciprocal Rank) of 0.572, outperforming four state-of-the-art models UNIF, DeepCS, CARLCS-CNN, and TAB-CS by 34.2%, 59.3%, 36.8%, and 14.1%, respectively. Additionally, the search speed of MM-SCS is second only to UNIF, reaching 0.34s/query.
期刊介绍:
IEEE Transactions on Software Engineering seeks contributions comprising well-defined theoretical results and empirical studies with potential impacts on software construction, analysis, or management. The scope of this Transactions extends from fundamental mechanisms to the development of principles and their application in specific environments. Specific topic areas include:
a) Development and maintenance methods and models: Techniques and principles for specifying, designing, and implementing software systems, encompassing notations and process models.
b) Assessment methods: Software tests, validation, reliability models, test and diagnosis procedures, software redundancy, design for error control, and measurements and evaluation of process and product aspects.
c) Software project management: Productivity factors, cost models, schedule and organizational issues, and standards.
d) Tools and environments: Specific tools, integrated tool environments, associated architectures, databases, and parallel and distributed processing issues.
e) System issues: Hardware-software trade-offs.
f) State-of-the-art surveys: Syntheses and comprehensive reviews of the historical development within specific areas of interest.