{"title":"SmartOracle: Generating Smart Contract Oracle via Fine-Grained Invariant Detection","authors":"Jianzhong Su;Jiachi Chen;Zhiyuan Fang;Xingwei Lin;Yutian Tang;Zibin Zheng","doi":"10.1109/TSE.2025.3534567","DOIUrl":null,"url":null,"abstract":"As decentralized applications (DApps) proliferate, the increased complexity and usage of smart contracts have heightened their susceptibility to security incidents and financial losses. Although various vulnerability detection tools have been developed to mitigate these issues, they often suffer poor performance in detecting vulnerabilities, as they either rely on simplistic and general-purpose oracles that may be inadequate for vulnerability detection, or require user-specified oracles, which are labor-intensive to create. In this paper, we introduce SmartOracle, a dynamic invariant detector that automatically generates fine-grained invariants as application-specific oracles for vulnerability detection. From historical transactions, SmartOracle uses pattern-based detection and advanced inference to construct comprehensive properties, and mines multi-layer <italic>likely</i> invariants to accommodate the complicated contract functionalities. After that, SmartOracle identifies smart contract vulnerabilities by hunting the violated invariants in new transactions. In the field of invariant detection, SmartOracle detects 50% more ERC20 invariants than existing dynamic invariant detection and achieves 96% precision rate. Furthermore, we build a dataset that contains vulnerable contracts from real-world security incidents. SmartOracle successfully detects 466 abnormal transactions with an acceptable precision rate 96%, involving 31 vulnerable contracts. The experimental results demonstrate its effectiveness in detecting smart contract vulnerabilities, especially those related to complicated contract functionalities.","PeriodicalId":13324,"journal":{"name":"IEEE Transactions on Software Engineering","volume":"51 4","pages":"947-959"},"PeriodicalIF":6.5000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10855805/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
As decentralized applications (DApps) proliferate, the increased complexity and usage of smart contracts have heightened their susceptibility to security incidents and financial losses. Although various vulnerability detection tools have been developed to mitigate these issues, they often suffer poor performance in detecting vulnerabilities, as they either rely on simplistic and general-purpose oracles that may be inadequate for vulnerability detection, or require user-specified oracles, which are labor-intensive to create. In this paper, we introduce SmartOracle, a dynamic invariant detector that automatically generates fine-grained invariants as application-specific oracles for vulnerability detection. From historical transactions, SmartOracle uses pattern-based detection and advanced inference to construct comprehensive properties, and mines multi-layer likely invariants to accommodate the complicated contract functionalities. After that, SmartOracle identifies smart contract vulnerabilities by hunting the violated invariants in new transactions. In the field of invariant detection, SmartOracle detects 50% more ERC20 invariants than existing dynamic invariant detection and achieves 96% precision rate. Furthermore, we build a dataset that contains vulnerable contracts from real-world security incidents. SmartOracle successfully detects 466 abnormal transactions with an acceptable precision rate 96%, involving 31 vulnerable contracts. The experimental results demonstrate its effectiveness in detecting smart contract vulnerabilities, especially those related to complicated contract functionalities.
期刊介绍:
IEEE Transactions on Software Engineering seeks contributions comprising well-defined theoretical results and empirical studies with potential impacts on software construction, analysis, or management. The scope of this Transactions extends from fundamental mechanisms to the development of principles and their application in specific environments. Specific topic areas include:
a) Development and maintenance methods and models: Techniques and principles for specifying, designing, and implementing software systems, encompassing notations and process models.
b) Assessment methods: Software tests, validation, reliability models, test and diagnosis procedures, software redundancy, design for error control, and measurements and evaluation of process and product aspects.
c) Software project management: Productivity factors, cost models, schedule and organizational issues, and standards.
d) Tools and environments: Specific tools, integrated tool environments, associated architectures, databases, and parallel and distributed processing issues.
e) System issues: Hardware-software trade-offs.
f) State-of-the-art surveys: Syntheses and comprehensive reviews of the historical development within specific areas of interest.