Transductive Few-Shot Learning With Enhanced Spectral-Spatial Embedding for Hyperspectral Image Classification

Bobo Xi;Yun Zhang;Jiaojiao Li;Yan Huang;Yunsong Li;Zan Li;Jocelyn Chanussot
{"title":"Transductive Few-Shot Learning With Enhanced Spectral-Spatial Embedding for Hyperspectral Image Classification","authors":"Bobo Xi;Yun Zhang;Jiaojiao Li;Yan Huang;Yunsong Li;Zan Li;Jocelyn Chanussot","doi":"10.1109/TIP.2025.3531709","DOIUrl":null,"url":null,"abstract":"Few-shot learning (FSL) has been rapidly developed in the hyperspectral image (HSI) classification, potentially eliminating time-consuming and costly labeled data acquisition requirements. Effective feature embedding is empirically significant in FSL methods, which is still challenging for the HSI with rich spectral-spatial information. In addition, compared with inductive FSL, transductive models typically perform better as they explicitly leverage the statistics in the query set. To this end, we devise a transductive FSL framework with enhanced spectral-spatial embedding (TEFSL) to fully exploit the limited prior information available. First, to improve the informative features and suppress the redundant ones contained in the HSI, we devise an attentive feature embedding network (AFEN) comprising a channel calibration module (CCM). Next, a meta-feature interaction module (MFIM) is designed to optimize the support and query features by learning adaptive co-attention using convolutional filters. During inference, we propose an iterative graph-based prototype refinement scheme (iGPRS) to achieve test-time adaptation, making the class centers more representative in a transductive learning manner. Extensive experimental results on four standard benchmarks demonstrate the superiority of our model with various handfuls (i.e., from 1 to 5) labeled samples. The code will be available online at <uri>https://github.com/B-Xi/TIP_2025_TEFSL</uri>.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"854-868"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10855324/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Few-shot learning (FSL) has been rapidly developed in the hyperspectral image (HSI) classification, potentially eliminating time-consuming and costly labeled data acquisition requirements. Effective feature embedding is empirically significant in FSL methods, which is still challenging for the HSI with rich spectral-spatial information. In addition, compared with inductive FSL, transductive models typically perform better as they explicitly leverage the statistics in the query set. To this end, we devise a transductive FSL framework with enhanced spectral-spatial embedding (TEFSL) to fully exploit the limited prior information available. First, to improve the informative features and suppress the redundant ones contained in the HSI, we devise an attentive feature embedding network (AFEN) comprising a channel calibration module (CCM). Next, a meta-feature interaction module (MFIM) is designed to optimize the support and query features by learning adaptive co-attention using convolutional filters. During inference, we propose an iterative graph-based prototype refinement scheme (iGPRS) to achieve test-time adaptation, making the class centers more representative in a transductive learning manner. Extensive experimental results on four standard benchmarks demonstrate the superiority of our model with various handfuls (i.e., from 1 to 5) labeled samples. The code will be available online at https://github.com/B-Xi/TIP_2025_TEFSL.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信