Disease-associated Kv1.3 variants are energy compromised with impaired nascent chain folding.

Aaron Sykes, Lannawill Caruth, Shefali Setia Verma, Toshinori Hoshi, Carol Deutsch
{"title":"Disease-associated Kv1.3 variants are energy compromised with impaired nascent chain folding.","authors":"Aaron Sykes, Lannawill Caruth, Shefali Setia Verma, Toshinori Hoshi, Carol Deutsch","doi":"10.1101/2025.01.17.631970","DOIUrl":null,"url":null,"abstract":"<p><p>Human Kv1.3, encoded by <i>KCNA3</i> , is expressed in neuronal and immune cells. Its impaired expression or function produces chronic inflammatory disease and autoimmune disorders, the severity of which correlates with Kv1.3 protein expression. The intersubunit recognition domain, T1, at the cytosolic N-terminus of Kv1.3, acquires secondary, tertiary, and quaternary structures during early biogenesis while the nascent protein is attached to the ribosome and/or the ER membrane. In this study, we ask whether native <i>KCNA3</i> gene variants in T1 are associated with human disease and whether they manifest early-stage folding defects, energetic instabilities, and conformational distortion of subunits. We use three approaches: first, the unbiased \"genome-first\" approach to determine phenotype associations of specific <i>KCNA3</i> rare variants. Second, we use biochemical assays to assess early-stage tertiary and quaternary folding and membrane association of these variants during early biogenesis. Third, we use all-atom molecular dynamics simulations of the T1 tetramer to assess structural macroscopic and energetic stability differences between wildtype (WT) Kv1.3 and a single-point variant, R114G. Measured folding probabilities and membrane associations are dramatically reduced in several of the native variants compared to WT. Simulations strikingly show that the R114G variant produces more energetically unstable and dynamic T1 domains, concomitant with tertiary unwinding and impaired formation of symmetrical tetramers. Our findings identify molecular mechanisms by which rare variants influence channel assembly, potentially contributing to diverse clinical phenotypes underlying human disease.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761497/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.01.17.631970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Human Kv1.3, encoded by KCNA3 , is expressed in neuronal and immune cells. Its impaired expression or function produces chronic inflammatory disease and autoimmune disorders, the severity of which correlates with Kv1.3 protein expression. The intersubunit recognition domain, T1, at the cytosolic N-terminus of Kv1.3, acquires secondary, tertiary, and quaternary structures during early biogenesis while the nascent protein is attached to the ribosome and/or the ER membrane. In this study, we ask whether native KCNA3 gene variants in T1 are associated with human disease and whether they manifest early-stage folding defects, energetic instabilities, and conformational distortion of subunits. We use three approaches: first, the unbiased "genome-first" approach to determine phenotype associations of specific KCNA3 rare variants. Second, we use biochemical assays to assess early-stage tertiary and quaternary folding and membrane association of these variants during early biogenesis. Third, we use all-atom molecular dynamics simulations of the T1 tetramer to assess structural macroscopic and energetic stability differences between wildtype (WT) Kv1.3 and a single-point variant, R114G. Measured folding probabilities and membrane associations are dramatically reduced in several of the native variants compared to WT. Simulations strikingly show that the R114G variant produces more energetically unstable and dynamic T1 domains, concomitant with tertiary unwinding and impaired formation of symmetrical tetramers. Our findings identify molecular mechanisms by which rare variants influence channel assembly, potentially contributing to diverse clinical phenotypes underlying human disease.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信