{"title":"Robust Indoor Pedestrian Backtracking Using Magnetic Signatures and Inertial Data.","authors":"Chia Hsuan Tsai, Roberto Manduchi","doi":"10.1109/ipin62893.2024.10786145","DOIUrl":null,"url":null,"abstract":"<p><p>Navigating unfamiliar environments can be challenging for visually impaired individuals due to difficulties in recognizing distant landmarks or visual cues. This work focuses on a particular form of wayfinding, specifically backtracking a previously taken path, which can be useful for blind pedestrians. We propose a hands-free indoor navigation solution using a smartphone without relying on pre-existing maps or external infrastructure. Our hybrid matching method integrates machine learning to enhance positioning accuracy, addressing real-life challenges such as odometry errors or deviations from the correct path. Testing with datasets from visually impaired individuals demonstrates the potential of our approach in providing reliable backtracking assistance.</p>","PeriodicalId":510887,"journal":{"name":"International Conference on Indoor Positioning and Indoor Navigation : [proceedings]. International Conference on Indoor Positioning and Indoor Navigation","volume":"2024 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759050/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Indoor Positioning and Indoor Navigation : [proceedings]. International Conference on Indoor Positioning and Indoor Navigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ipin62893.2024.10786145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Navigating unfamiliar environments can be challenging for visually impaired individuals due to difficulties in recognizing distant landmarks or visual cues. This work focuses on a particular form of wayfinding, specifically backtracking a previously taken path, which can be useful for blind pedestrians. We propose a hands-free indoor navigation solution using a smartphone without relying on pre-existing maps or external infrastructure. Our hybrid matching method integrates machine learning to enhance positioning accuracy, addressing real-life challenges such as odometry errors or deviations from the correct path. Testing with datasets from visually impaired individuals demonstrates the potential of our approach in providing reliable backtracking assistance.