Meta-omics reveals role of photosynthesis in microbially induced carbonate precipitation at a CO2-rich geyser.

IF 5.1 Q1 ECOLOGY
ISME communications Pub Date : 2024-12-11 eCollection Date: 2024-01-01 DOI:10.1093/ismeco/ycae139
Marlene J Violette, Ethan Hyland, Landon Burgener, Adit Ghosh, Brina M Montoya, Manuel Kleiner
{"title":"Meta-omics reveals role of photosynthesis in microbially induced carbonate precipitation at a CO<sub>2</sub>-rich geyser.","authors":"Marlene J Violette, Ethan Hyland, Landon Burgener, Adit Ghosh, Brina M Montoya, Manuel Kleiner","doi":"10.1093/ismeco/ycae139","DOIUrl":null,"url":null,"abstract":"<p><p>Microbially induced carbonate precipitation (MICP) is a natural process with potential biotechnological applications to address both carbon sequestration and sustainable construction needs. However, our understanding of the microbial processes involved in MICP is limited to a few well-researched pathways such as ureolytic hydrolysis. To expand our knowledge of MICP, we conducted an omics-based study on sedimentary communities from travertine around the CO<sub>2</sub>-driven Crystal Geyser near Green River, Utah. Using metagenomics and metaproteomics, we identified the community members and potential metabolic pathways involved in MICP. We found variations in microbial community composition between the two sites we sampled, but <i>Rhodobacterales</i> were consistently the most abundant order, including both chemoheterotrophs and anoxygenic phototrophs. We also identified several highly abundant genera of <i>Cyanobacteriales</i>. The dominance of these community members across both sites and the abundant presence of photosynthesis-related proteins suggest that photosynthesis could play a role in MICP at Crystal Geyser. We also found abundant bacterial proteins involved in phosphorous starvation response at both sites suggesting that P-limitation shapes both composition and function of the microbial community driving MICP.</p>","PeriodicalId":73516,"journal":{"name":"ISME communications","volume":"4 1","pages":"ycae139"},"PeriodicalIF":5.1000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760937/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismeco/ycae139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microbially induced carbonate precipitation (MICP) is a natural process with potential biotechnological applications to address both carbon sequestration and sustainable construction needs. However, our understanding of the microbial processes involved in MICP is limited to a few well-researched pathways such as ureolytic hydrolysis. To expand our knowledge of MICP, we conducted an omics-based study on sedimentary communities from travertine around the CO2-driven Crystal Geyser near Green River, Utah. Using metagenomics and metaproteomics, we identified the community members and potential metabolic pathways involved in MICP. We found variations in microbial community composition between the two sites we sampled, but Rhodobacterales were consistently the most abundant order, including both chemoheterotrophs and anoxygenic phototrophs. We also identified several highly abundant genera of Cyanobacteriales. The dominance of these community members across both sites and the abundant presence of photosynthesis-related proteins suggest that photosynthesis could play a role in MICP at Crystal Geyser. We also found abundant bacterial proteins involved in phosphorous starvation response at both sites suggesting that P-limitation shapes both composition and function of the microbial community driving MICP.

元组学揭示了光合作用在富含二氧化碳的间歇泉微生物诱导碳酸盐沉淀中的作用。
微生物诱导碳酸盐沉淀(MICP)是一种自然过程,具有潜在的生物技术应用,可以解决碳封存和可持续建设的需求。然而,我们对MICP中涉及的微生物过程的理解仅限于一些研究得很好的途径,如尿解水解。为了扩大我们对MICP的了解,我们对犹他州格林河附近由二氧化碳驱动的水晶间歇泉周围的石灰华沉积群落进行了一项基于组学的研究。利用宏基因组学和宏蛋白质组学,我们确定了MICP的社区成员和潜在的代谢途径。我们发现两个采样点的微生物群落组成存在差异,但红杆菌属始终是最丰富的目,包括趋化异养菌和无氧光养菌。我们还鉴定了几个高度丰富的蓝藻属。这些群落成员在两个地点的优势地位以及光合作用相关蛋白的丰富存在表明光合作用可能在晶体间歇泉的MICP中发挥作用。我们还在这两个位点发现了大量参与磷饥饿反应的细菌蛋白,这表明磷限制决定了驱动MICP的微生物群落的组成和功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信