The feasibility of using machine learning to predict COVID-19 cases

IF 3.7 2区 医学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Shan Chen , Yuanzhao Ding
{"title":"The feasibility of using machine learning to predict COVID-19 cases","authors":"Shan Chen ,&nbsp;Yuanzhao Ding","doi":"10.1016/j.ijmedinf.2025.105786","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Coronavirus Disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, emerged as a global health crisis in 2019, resulting in widespread morbidity and mortality. A persistent challenge during the pandemic has been the accuracy of reported epidemic data, particularly in underdeveloped regions with limited access to COVID-19 test kits and healthcare infrastructure. In the post-COVID era, this issue remains crucial. This study introduces a novel approach by leveraging machine learning to predict cases and uncover critical discrepancies, focusing on African regions where reported daily cases per million often deviate significantly from machine learning-predicted cases. These findings strongly suggest widespread underreporting of cases. By identifying these gaps, our research provides valuable insights for future pandemic preparedness, improving epidemic forecasting accuracy, data reliability, and response strategies to mitigate the impact of emerging global health crises.</div></div><div><h3>Objective</h3><div>This study aims to assess the reliability of reported COVID-19 incidence data globally, particularly in underdeveloped regions, and to identify discrepancies between reported and predicted cases using machine learning methodologies.</div></div><div><h3>Methods</h3><div>Data collected from March 2020 to September 2022 included demographic, healthcare, economic, and testing-related parameters. Several machine learning models—neural networks, decision trees, random forests, cross-validation, support vector machines, and logistic regression—were employed to predict COVID-19 incidence rates. Model performance was evaluated using testing accuracy metrics.</div></div><div><h3>Results</h3><div>Testing accuracy rates for the models were as follows: neural networks (65.50 %), decision trees (63.76 %), random forests (63.33 %), cross-validation (55.92 %), support vector machines (63.62 %), and logistic regression (64.70 %). Comparative analysis using neural networks revealed significant discrepancies between reported and predicted COVID-19 cases, particularly in numerous African countries. These results suggest a considerable volume of underreported cases in regions with limited testing capabilities.</div></div><div><h3>Conclusion</h3><div>This study highlights the critical need for improved data accuracy and reporting mechanisms, especially in resource-constrained regions. International organizations and policymakers must implement strategies to enhance testing capacity and data reliability to better understand and manage the global impact of the pandemic. Our work emphasizes the potential of machine learning to identify gaps in epidemic reporting, facilitating evidence-based interventions.</div></div>","PeriodicalId":54950,"journal":{"name":"International Journal of Medical Informatics","volume":"196 ","pages":"Article 105786"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386505625000036","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Coronavirus Disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, emerged as a global health crisis in 2019, resulting in widespread morbidity and mortality. A persistent challenge during the pandemic has been the accuracy of reported epidemic data, particularly in underdeveloped regions with limited access to COVID-19 test kits and healthcare infrastructure. In the post-COVID era, this issue remains crucial. This study introduces a novel approach by leveraging machine learning to predict cases and uncover critical discrepancies, focusing on African regions where reported daily cases per million often deviate significantly from machine learning-predicted cases. These findings strongly suggest widespread underreporting of cases. By identifying these gaps, our research provides valuable insights for future pandemic preparedness, improving epidemic forecasting accuracy, data reliability, and response strategies to mitigate the impact of emerging global health crises.

Objective

This study aims to assess the reliability of reported COVID-19 incidence data globally, particularly in underdeveloped regions, and to identify discrepancies between reported and predicted cases using machine learning methodologies.

Methods

Data collected from March 2020 to September 2022 included demographic, healthcare, economic, and testing-related parameters. Several machine learning models—neural networks, decision trees, random forests, cross-validation, support vector machines, and logistic regression—were employed to predict COVID-19 incidence rates. Model performance was evaluated using testing accuracy metrics.

Results

Testing accuracy rates for the models were as follows: neural networks (65.50 %), decision trees (63.76 %), random forests (63.33 %), cross-validation (55.92 %), support vector machines (63.62 %), and logistic regression (64.70 %). Comparative analysis using neural networks revealed significant discrepancies between reported and predicted COVID-19 cases, particularly in numerous African countries. These results suggest a considerable volume of underreported cases in regions with limited testing capabilities.

Conclusion

This study highlights the critical need for improved data accuracy and reporting mechanisms, especially in resource-constrained regions. International organizations and policymakers must implement strategies to enhance testing capacity and data reliability to better understand and manage the global impact of the pandemic. Our work emphasizes the potential of machine learning to identify gaps in epidemic reporting, facilitating evidence-based interventions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Medical Informatics
International Journal of Medical Informatics 医学-计算机:信息系统
CiteScore
8.90
自引率
4.10%
发文量
217
审稿时长
42 days
期刊介绍: International Journal of Medical Informatics provides an international medium for dissemination of original results and interpretative reviews concerning the field of medical informatics. The Journal emphasizes the evaluation of systems in healthcare settings. The scope of journal covers: Information systems, including national or international registration systems, hospital information systems, departmental and/or physician''s office systems, document handling systems, electronic medical record systems, standardization, systems integration etc.; Computer-aided medical decision support systems using heuristic, algorithmic and/or statistical methods as exemplified in decision theory, protocol development, artificial intelligence, etc. Educational computer based programs pertaining to medical informatics or medicine in general; Organizational, economic, social, clinical impact, ethical and cost-benefit aspects of IT applications in health care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信