{"title":"Fully Synthetic Data for Complex Surveys.","authors":"Shirley Mathur, Yajuan Si, Jerome P Reiter","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>When seeking to release public use files for confidential data, statistical agencies can generate fully synthetic data. We propose an approach for making fully synthetic data from surveys collected with complex sampling designs. Our approach adheres to the general strategy proposed by Rubin (1993). Specifically, we generate pseudo-populations by applying the weighted finite population Bayesian bootstrap to account for survey weights, take simple random samples from those pseudo-populations, estimate synthesis models using these simple random samples, and release simulated data drawn from the models as public use files. To facilitate variance estimation, we use the framework of multiple imputation with two data generation strategies. In the first, we generate multiple data sets from each simple random sample. In the second, we generate a single synthetic data set from each simple random sample. We present multiple imputation combining rules for each setting. We illustrate the repeated sampling properties of the combining rules via simulation studies, including comparisons with synthetic data generation based on pseudo-likelihood methods. We apply the proposed methods to a subset of data from the American Community Survey.</p>","PeriodicalId":51191,"journal":{"name":"Survey Methodology","volume":"50 2","pages":"347-373"},"PeriodicalIF":1.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759325/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Survey Methodology","FirstCategoryId":"100","ListUrlMain":"","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
When seeking to release public use files for confidential data, statistical agencies can generate fully synthetic data. We propose an approach for making fully synthetic data from surveys collected with complex sampling designs. Our approach adheres to the general strategy proposed by Rubin (1993). Specifically, we generate pseudo-populations by applying the weighted finite population Bayesian bootstrap to account for survey weights, take simple random samples from those pseudo-populations, estimate synthesis models using these simple random samples, and release simulated data drawn from the models as public use files. To facilitate variance estimation, we use the framework of multiple imputation with two data generation strategies. In the first, we generate multiple data sets from each simple random sample. In the second, we generate a single synthetic data set from each simple random sample. We present multiple imputation combining rules for each setting. We illustrate the repeated sampling properties of the combining rules via simulation studies, including comparisons with synthetic data generation based on pseudo-likelihood methods. We apply the proposed methods to a subset of data from the American Community Survey.
期刊介绍:
The journal publishes articles dealing with various aspects of statistical development relevant to a statistical agency, such as design issues in the context of practical constraints, use of different data sources and collection techniques, total survey error, survey evaluation, research in survey methodology, time series analysis, seasonal adjustment, demographic studies, data integration, estimation and data analysis methods, and general survey systems development. The emphasis is placed on the development and evaluation of specific methodologies as applied to data collection or the data themselves.