TimeMachine: A Time Series is Worth 4 Mambas for Long-Term Forecasting.

Md Atik Ahamed, Qiang Cheng
{"title":"TimeMachine: A Time Series is Worth 4 Mambas for Long-Term Forecasting.","authors":"Md Atik Ahamed, Qiang Cheng","doi":"10.3233/faia240677","DOIUrl":null,"url":null,"abstract":"<p><p>Long-term time-series forecasting remains challenging due to the difficulty in capturing long-term dependencies, achieving linear scalability, and maintaining computational efficiency. We introduce TimeMachine, an innovative model that leverages Mamba, a state-space model, to capture long-term dependencies in multivariate time series data while maintaining linear scalability and small memory footprints. TimeMachine exploits the unique properties of time series data to produce salient contextual cues at multi-scales and leverage an innovative integrated quadruple-Mamba architecture to unify the handling of channel-mixing and channel-independence situations, thus enabling effective selection of contents for prediction against global and local contexts at different scales. Experimentally, TimeMachine achieves superior performance in prediction accuracy, scalability, and memory efficiency, as extensively validated using benchmark datasets.</p>","PeriodicalId":520398,"journal":{"name":"ECAI 2024 : 27th European Conference on Artificial Intelligence, 19-24 October 2024, Santiago de Compostela, Spain - Including 13th Conference on Prestigious Applications of Intelligent Systems. European Conference on Artificial Intelli...","volume":"392 ","pages":"1688-1695"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767608/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECAI 2024 : 27th European Conference on Artificial Intelligence, 19-24 October 2024, Santiago de Compostela, Spain - Including 13th Conference on Prestigious Applications of Intelligent Systems. European Conference on Artificial Intelli...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/faia240677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Long-term time-series forecasting remains challenging due to the difficulty in capturing long-term dependencies, achieving linear scalability, and maintaining computational efficiency. We introduce TimeMachine, an innovative model that leverages Mamba, a state-space model, to capture long-term dependencies in multivariate time series data while maintaining linear scalability and small memory footprints. TimeMachine exploits the unique properties of time series data to produce salient contextual cues at multi-scales and leverage an innovative integrated quadruple-Mamba architecture to unify the handling of channel-mixing and channel-independence situations, thus enabling effective selection of contents for prediction against global and local contexts at different scales. Experimentally, TimeMachine achieves superior performance in prediction accuracy, scalability, and memory efficiency, as extensively validated using benchmark datasets.

时间机器:一个时间序列值4个曼巴的长期预测。
长期时间序列预测仍然具有挑战性,因为难以捕获长期依赖关系、实现线性可伸缩性和保持计算效率。我们介绍timemmachine,这是一种利用状态空间模型Mamba捕获多变量时间序列数据中的长期依赖关系的创新模型,同时保持线性可伸缩性和小内存占用。timemmachine利用时间序列数据的独特属性,在多尺度上产生显著的上下文线索,并利用创新的集成四倍曼巴架构来统一处理频道混合和频道独立情况,从而能够有效地选择内容,以预测不同尺度下的全球和本地上下文。在实验中,timemmachine在预测精度、可扩展性和内存效率方面取得了卓越的性能,并通过基准数据集进行了广泛验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信