{"title":"In Vivo Tissue Temperature Characteristics of Contact Force Catheter With a Mesh-Shaped Irrigation Tip: A Porcine Study.","authors":"Masanaru Sawada, Naoto Otsuka, Koichi Nagashima, Ryuta Watanabe, Yuji Wakamatsu, Satoshi Hayashida, Shu Hirata, Moyuru Hirata, Sayaka Kurokawa, Yasuo Okumura, Kenta Uto, Hiroyuki Hao, Rie Takahashi, Yoshiki Taniguchi","doi":"10.1111/pace.15147","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Neither the actual in vivo tissue temperatures reached with a novel contact force sensing catheter with a mesh-shaped irrigation tip (TactiFlex SE, Abbott) nor the safety profile has been elucidated.</p><p><strong>Methods: </strong>In a porcine model (n = 8), thermocouples were implanted epicardially in the superior vena cava, right pulmonary vein, and esophagus close to the inferior vena cava following a right thoracotomy. After chest closure, endocardial ablation was conducted near the thermocouples under fluoroscopic guidance. We compared tissue temperatures during 50 W/13-s high-power short-duration (HPSD) and 30 W/30-s standard ablation.</p><p><strong>Results: </strong>No steam pops were observed in 34 HPSD and 35 standard ablation applications. Tmax (maximum tissue temperature when the thermocouple was located ≤5 mm from the catheter tip) was modestly higher in HPSD compared to standard ablation (60.1°C ± 12.4°C vs. 57.8°C ± 12.9°C; p = 0.46). The peak tissue temperature correlated inversely with the catheter tip-to-thermocouple distance (HPSD: r = -0.40; standard: r = -0.57). Lethal temperatures (≥50°C) were reached faster with HPSD (6.5 ± 3.2 s vs. 10.3 ± 8.6 s; p = 0.04) and the distance from the catheter tip achieving a lethal tissue temperature ≥50°C (indicative of the lesion depth) was slightly shallower with HPSD (4.2 and 4.8 mm, respectively). The esophageal injury occurred superficially in both settings (0.98 ± 0.22 mm vs. 1.16 ± 0.18 mm; p = 0.29).</p><p><strong>Conclusions: </strong>HPSD ablation produced a modestly higher and more rapid increase in the tissue temperature around the veno-atrial junction with a shorter catheter tip-to-thermocouple distance required to reach lethal temperatures. This data contributes to understanding effective lesion creation and collateral injury prevention with the TactiFlex catheter.</p>","PeriodicalId":54653,"journal":{"name":"Pace-Pacing and Clinical Electrophysiology","volume":" ","pages":"270-279"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pace-Pacing and Clinical Electrophysiology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pace.15147","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Neither the actual in vivo tissue temperatures reached with a novel contact force sensing catheter with a mesh-shaped irrigation tip (TactiFlex SE, Abbott) nor the safety profile has been elucidated.
Methods: In a porcine model (n = 8), thermocouples were implanted epicardially in the superior vena cava, right pulmonary vein, and esophagus close to the inferior vena cava following a right thoracotomy. After chest closure, endocardial ablation was conducted near the thermocouples under fluoroscopic guidance. We compared tissue temperatures during 50 W/13-s high-power short-duration (HPSD) and 30 W/30-s standard ablation.
Results: No steam pops were observed in 34 HPSD and 35 standard ablation applications. Tmax (maximum tissue temperature when the thermocouple was located ≤5 mm from the catheter tip) was modestly higher in HPSD compared to standard ablation (60.1°C ± 12.4°C vs. 57.8°C ± 12.9°C; p = 0.46). The peak tissue temperature correlated inversely with the catheter tip-to-thermocouple distance (HPSD: r = -0.40; standard: r = -0.57). Lethal temperatures (≥50°C) were reached faster with HPSD (6.5 ± 3.2 s vs. 10.3 ± 8.6 s; p = 0.04) and the distance from the catheter tip achieving a lethal tissue temperature ≥50°C (indicative of the lesion depth) was slightly shallower with HPSD (4.2 and 4.8 mm, respectively). The esophageal injury occurred superficially in both settings (0.98 ± 0.22 mm vs. 1.16 ± 0.18 mm; p = 0.29).
Conclusions: HPSD ablation produced a modestly higher and more rapid increase in the tissue temperature around the veno-atrial junction with a shorter catheter tip-to-thermocouple distance required to reach lethal temperatures. This data contributes to understanding effective lesion creation and collateral injury prevention with the TactiFlex catheter.
期刊介绍:
Pacing and Clinical Electrophysiology (PACE) is the foremost peer-reviewed journal in the field of pacing and implantable cardioversion defibrillation, publishing over 50% of all English language articles in its field, featuring original, review, and didactic papers, and case reports related to daily practice. Articles also include editorials, book reviews, Musings on humane topics relevant to medical practice, electrophysiology (EP) rounds, device rounds, and information concerning the quality of devices used in the practice of the specialty.