Estimating the generation time for influenza transmission using household data in the United States

IF 3 3区 医学 Q2 INFECTIOUS DISEASES
Louis Yat Hin Chan , Sinead E. Morris , Melissa S. Stockwell , Natalie M. Bowman , Edwin Asturias , Suchitra Rao , Karen Lutrick , Katherine D. Ellingson , Huong Q. Nguyen , Yvonne Maldonado , Son H. McLaren , Ellen Sano , Jessica E. Biddle , Sarah E. Smith-Jeffcoat , Matthew Biggerstaff , Melissa A. Rolfes , H. Keipp Talbot , Carlos G. Grijalva , Rebecca K. Borchering , Alexandra M. Mellis
{"title":"Estimating the generation time for influenza transmission using household data in the United States","authors":"Louis Yat Hin Chan ,&nbsp;Sinead E. Morris ,&nbsp;Melissa S. Stockwell ,&nbsp;Natalie M. Bowman ,&nbsp;Edwin Asturias ,&nbsp;Suchitra Rao ,&nbsp;Karen Lutrick ,&nbsp;Katherine D. Ellingson ,&nbsp;Huong Q. Nguyen ,&nbsp;Yvonne Maldonado ,&nbsp;Son H. McLaren ,&nbsp;Ellen Sano ,&nbsp;Jessica E. Biddle ,&nbsp;Sarah E. Smith-Jeffcoat ,&nbsp;Matthew Biggerstaff ,&nbsp;Melissa A. Rolfes ,&nbsp;H. Keipp Talbot ,&nbsp;Carlos G. Grijalva ,&nbsp;Rebecca K. Borchering ,&nbsp;Alexandra M. Mellis","doi":"10.1016/j.epidem.2025.100815","DOIUrl":null,"url":null,"abstract":"<div><div>The generation time, representing the interval between infections in primary and secondary cases, is essential for understanding and predicting the transmission dynamics of seasonal influenza, including the real-time effective reproduction number (Rt). However, comprehensive generation time estimates for seasonal influenza, especially since the 2009 influenza pandemic, are lacking. We estimated the generation time utilizing data from a 7-site case-ascertained household study in the United States over two influenza seasons, 2021/2022 and 2022/2023. More than 200 individuals who tested positive for influenza and their household contacts were enrolled within 7 days of the first illness in the household. All participants were prospectively followed for 10 days, completing daily symptom diaries and collecting nasal swabs, which were then tested for influenza via RT-PCR. We analyzed these data by modifying a previously published Bayesian data augmentation approach that imputes infection times of cases to obtain both intrinsic (assuming no susceptible depletion) and realized (observed within household) generation times. We assessed the robustness of the generation time estimate by varying the incubation period, and generated estimates of the proportion of transmission occurring before symptomatic onset, the infectious period, and the latent period. We estimated a mean intrinsic generation time of 3.2 (95 % credible interval, CrI: 2.9–3.6) days, with a realized household generation time of 2.8 (95 % CrI: 2.7–3.0) days. The generation time exhibited limited sensitivity to incubation period variation. Estimates of the proportion of transmission that occurred before symptom onset, the infectious period, and the latent period were sensitive to variations in the incubation period. Our study contributes to the ongoing efforts to refine estimates of the generation time for influenza. Our estimates, derived from recent data following the COVID-19 pandemic, are consistent with previous pre-pandemic estimates, and will be incorporated into real-time Rt estimation efforts.</div></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":"50 ","pages":"Article 100815"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755436525000039","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

The generation time, representing the interval between infections in primary and secondary cases, is essential for understanding and predicting the transmission dynamics of seasonal influenza, including the real-time effective reproduction number (Rt). However, comprehensive generation time estimates for seasonal influenza, especially since the 2009 influenza pandemic, are lacking. We estimated the generation time utilizing data from a 7-site case-ascertained household study in the United States over two influenza seasons, 2021/2022 and 2022/2023. More than 200 individuals who tested positive for influenza and their household contacts were enrolled within 7 days of the first illness in the household. All participants were prospectively followed for 10 days, completing daily symptom diaries and collecting nasal swabs, which were then tested for influenza via RT-PCR. We analyzed these data by modifying a previously published Bayesian data augmentation approach that imputes infection times of cases to obtain both intrinsic (assuming no susceptible depletion) and realized (observed within household) generation times. We assessed the robustness of the generation time estimate by varying the incubation period, and generated estimates of the proportion of transmission occurring before symptomatic onset, the infectious period, and the latent period. We estimated a mean intrinsic generation time of 3.2 (95 % credible interval, CrI: 2.9–3.6) days, with a realized household generation time of 2.8 (95 % CrI: 2.7–3.0) days. The generation time exhibited limited sensitivity to incubation period variation. Estimates of the proportion of transmission that occurred before symptom onset, the infectious period, and the latent period were sensitive to variations in the incubation period. Our study contributes to the ongoing efforts to refine estimates of the generation time for influenza. Our estimates, derived from recent data following the COVID-19 pandemic, are consistent with previous pre-pandemic estimates, and will be incorporated into real-time Rt estimation efforts.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Epidemics
Epidemics INFECTIOUS DISEASES-
CiteScore
6.00
自引率
7.90%
发文量
92
审稿时长
140 days
期刊介绍: Epidemics publishes papers on infectious disease dynamics in the broadest sense. Its scope covers both within-host dynamics of infectious agents and dynamics at the population level, particularly the interaction between the two. Areas of emphasis include: spread, transmission, persistence, implications and population dynamics of infectious diseases; population and public health as well as policy aspects of control and prevention; dynamics at the individual level; interaction with the environment, ecology and evolution of infectious diseases, as well as population genetics of infectious agents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信