Significance of gender, brain region and EEG band complexity analysis for Parkinson's disease classification using recurrence plots and machine learning algorithms.

IF 2.4 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Divya Sasidharan, V Sowmya, E A Gopalakrishnan
{"title":"Significance of gender, brain region and EEG band complexity analysis for Parkinson's disease classification using recurrence plots and machine learning algorithms.","authors":"Divya Sasidharan, V Sowmya, E A Gopalakrishnan","doi":"10.1007/s13246-025-01521-5","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson Disease (PD) is a complex neurological disorder attributed by loss of neurons generating dopamine in the SN per compacta. Electroencephalogram (EEG) plays an important role in diagnosing PD as it offers a non-invasive continuous assessment of the disease progression and reflects these complex patterns. This study focuses on the non-linear analysis of resting state EEG signals in PD, with a gender-specific, brain region-specific, and EEG band-specific approach, utilizing recurrence plots (RPs) and machine learning (ML) algorithms for classification. For this an open EEG dataset consisting of 14 PD and 14 healthy (HC) subjects is utilized. Recurrence plots and cross-recurrence plots (CRPs) were constructed for each frequency band and brain region, extracting complexity measures such as determinism (DET) and entropy (ENT). The interpretability of the ML model decisions is investigated using explainability technique. The scattered distribution of points in RPs of male PD individuals reflects the complex and dynamic nature of abnormal brain function. Also, CRPs confirms the enhanced effect of Beta Gamma synchronization during PD in the Parietal region. Low DET and high ENT corresponds to the complex non-linear characteristics of EEG signals and brain neuronal circuits during PD condition in male subjects. The extracted recurrence features served as inputs to the ML models, which achieved high classification performance, across all the scenarios. This study demonstrates the potential of recurrence plot-based complexity analysis combined with machine learning for the gender-specific, region-specific, and band-specific assessment of EEG signals during resting state in Parkinson's disease.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-025-01521-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Parkinson Disease (PD) is a complex neurological disorder attributed by loss of neurons generating dopamine in the SN per compacta. Electroencephalogram (EEG) plays an important role in diagnosing PD as it offers a non-invasive continuous assessment of the disease progression and reflects these complex patterns. This study focuses on the non-linear analysis of resting state EEG signals in PD, with a gender-specific, brain region-specific, and EEG band-specific approach, utilizing recurrence plots (RPs) and machine learning (ML) algorithms for classification. For this an open EEG dataset consisting of 14 PD and 14 healthy (HC) subjects is utilized. Recurrence plots and cross-recurrence plots (CRPs) were constructed for each frequency band and brain region, extracting complexity measures such as determinism (DET) and entropy (ENT). The interpretability of the ML model decisions is investigated using explainability technique. The scattered distribution of points in RPs of male PD individuals reflects the complex and dynamic nature of abnormal brain function. Also, CRPs confirms the enhanced effect of Beta Gamma synchronization during PD in the Parietal region. Low DET and high ENT corresponds to the complex non-linear characteristics of EEG signals and brain neuronal circuits during PD condition in male subjects. The extracted recurrence features served as inputs to the ML models, which achieved high classification performance, across all the scenarios. This study demonstrates the potential of recurrence plot-based complexity analysis combined with machine learning for the gender-specific, region-specific, and band-specific assessment of EEG signals during resting state in Parkinson's disease.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.40
自引率
4.50%
发文量
110
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信