AI for all: bridging data gaps in machine learning and health.

IF 3.6 3区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Monica L Wang, Kimberly A Bertrand
{"title":"AI for all: bridging data gaps in machine learning and health.","authors":"Monica L Wang, Kimberly A Bertrand","doi":"10.1093/tbm/ibae075","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) and its subset, machine learning, have tremendous potential to transform health care, medicine, and population health through improved diagnoses, treatments, and patient care. However, the effectiveness of these technologies hinges on the quality and diversity of the data used to train them. Many datasets currently used in machine learning are inherently biased and lack diversity, leading to inaccurate predictions that may perpetuate existing health disparities. This commentary highlights the challenges of biased datasets, the impact on marginalized communities, and the critical need for strategies to address these disparities throughout the research continuum. To overcome these challenges, it is essential to adopt more inclusive data collection practices, engage collaboratively with community stakeholders, and leverage innovative approaches like federated learning. These steps can help mitigate bias and enhance the accuracy and fairness of AI-assisted or informed health care solutions. By addressing systemic biases embedded across research phases, we can build a better foundation for AI to enhance diagnostic and treatment capabilities and move society closer to the goal where improved health and health care can be a fundamental right for all, and not just for some.</p>","PeriodicalId":48679,"journal":{"name":"Translational Behavioral Medicine","volume":"15 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Behavioral Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/tbm/ibae075","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) and its subset, machine learning, have tremendous potential to transform health care, medicine, and population health through improved diagnoses, treatments, and patient care. However, the effectiveness of these technologies hinges on the quality and diversity of the data used to train them. Many datasets currently used in machine learning are inherently biased and lack diversity, leading to inaccurate predictions that may perpetuate existing health disparities. This commentary highlights the challenges of biased datasets, the impact on marginalized communities, and the critical need for strategies to address these disparities throughout the research continuum. To overcome these challenges, it is essential to adopt more inclusive data collection practices, engage collaboratively with community stakeholders, and leverage innovative approaches like federated learning. These steps can help mitigate bias and enhance the accuracy and fairness of AI-assisted or informed health care solutions. By addressing systemic biases embedded across research phases, we can build a better foundation for AI to enhance diagnostic and treatment capabilities and move society closer to the goal where improved health and health care can be a fundamental right for all, and not just for some.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Translational Behavioral Medicine
Translational Behavioral Medicine PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH -
CiteScore
6.80
自引率
0.00%
发文量
87
期刊介绍: Translational Behavioral Medicine publishes content that engages, informs, and catalyzes dialogue about behavioral medicine among the research, practice, and policy communities. TBM began receiving an Impact Factor in 2015 and currently holds an Impact Factor of 2.989. TBM is one of two journals published by the Society of Behavioral Medicine. The Society of Behavioral Medicine is a multidisciplinary organization of clinicians, educators, and scientists dedicated to promoting the study of the interactions of behavior with biology and the environment, and then applying that knowledge to improve the health and well-being of individuals, families, communities, and populations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信