On Tractable Convex Relaxations of Standard Quadratic Optimization Problems under Sparsity Constraints.

IF 1.6 3区 数学 Q2 MATHEMATICS, APPLIED
Immanuel Bomze, Bo Peng, Yuzhou Qiu, E Alper Yıldırım
{"title":"On Tractable Convex Relaxations of Standard Quadratic Optimization Problems under Sparsity Constraints.","authors":"Immanuel Bomze, Bo Peng, Yuzhou Qiu, E Alper Yıldırım","doi":"10.1007/s10957-024-02593-1","DOIUrl":null,"url":null,"abstract":"<p><p>Standard quadratic optimization problems (StQPs) provide a versatile modelling tool in various applications. In this paper, we consider StQPs with a hard sparsity constraint, referred to as sparse StQPs. We focus on various tractable convex relaxations of sparse StQPs arising from a mixed-binary quadratic formulation, namely, the linear optimization relaxation given by the reformulation-linearization technique, the Shor relaxation, and the relaxation resulting from their combination. We establish several structural properties of these relaxations in relation to the corresponding relaxations of StQPs without any sparsity constraints, and pay particular attention to the rank-one feasible solutions retained by these relaxations. We then utilize these relations to establish several results about the quality of the lower bounds arising from different relaxations. We also present several conditions that ensure the exactness of each relaxation.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"204 3","pages":"38"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11757943/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02593-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Standard quadratic optimization problems (StQPs) provide a versatile modelling tool in various applications. In this paper, we consider StQPs with a hard sparsity constraint, referred to as sparse StQPs. We focus on various tractable convex relaxations of sparse StQPs arising from a mixed-binary quadratic formulation, namely, the linear optimization relaxation given by the reformulation-linearization technique, the Shor relaxation, and the relaxation resulting from their combination. We establish several structural properties of these relaxations in relation to the corresponding relaxations of StQPs without any sparsity constraints, and pay particular attention to the rank-one feasible solutions retained by these relaxations. We then utilize these relations to establish several results about the quality of the lower bounds arising from different relaxations. We also present several conditions that ensure the exactness of each relaxation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
149
审稿时长
9.9 months
期刊介绍: The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信