Artificial intelligence-based framework for early detection of heart disease using enhanced multilayer perceptron.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2025-01-10 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1539588
Monir Abdullah
{"title":"Artificial intelligence-based framework for early detection of heart disease using enhanced multilayer perceptron.","authors":"Monir Abdullah","doi":"10.3389/frai.2024.1539588","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiac disease refers to diseases that affect the heart such as coronary artery diseases, arrhythmia and heart defects and is amongst the most difficult health conditions known to humanity. According to the WHO, heart disease is the foremost cause of mortality worldwide, causing an estimated 17.8 million deaths every year it consumes a significant amount of time as well as effort to figure out what is causing this, especially for medical specialists and doctors. Manual methods for detecting cardiac disease are biased and subject to medical specialist variance. In this aspect, machine learning algorithms have proved to be effective and dependable alternatives for detecting and classifying patients who are affected by heart disease. Precise and prompt detection of human heart disease can assist in avoiding heart failure within the initial stages and enhance patient survival. This study proposed a novel Enhanced Multilayer Perceptron (EMLP) framework complemented by data refinement techniques to enhance predictive accuracy. The classification model asses using the CDC cardiac disease dataset and achieved 92% accuracy by surpassing all the traditional methods. The proposed framework demonstrates significant potential for the early detection and prediction of cardiac-related diseases. Experimental results indicate that the Enhanced Multilayer Perceptron (EMLP) model outperformed the other algorithms in terms of accuracy, precision, F1-score, and recall, underscoring its efficacy in cardiac disease detection.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1539588"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760590/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1539588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiac disease refers to diseases that affect the heart such as coronary artery diseases, arrhythmia and heart defects and is amongst the most difficult health conditions known to humanity. According to the WHO, heart disease is the foremost cause of mortality worldwide, causing an estimated 17.8 million deaths every year it consumes a significant amount of time as well as effort to figure out what is causing this, especially for medical specialists and doctors. Manual methods for detecting cardiac disease are biased and subject to medical specialist variance. In this aspect, machine learning algorithms have proved to be effective and dependable alternatives for detecting and classifying patients who are affected by heart disease. Precise and prompt detection of human heart disease can assist in avoiding heart failure within the initial stages and enhance patient survival. This study proposed a novel Enhanced Multilayer Perceptron (EMLP) framework complemented by data refinement techniques to enhance predictive accuracy. The classification model asses using the CDC cardiac disease dataset and achieved 92% accuracy by surpassing all the traditional methods. The proposed framework demonstrates significant potential for the early detection and prediction of cardiac-related diseases. Experimental results indicate that the Enhanced Multilayer Perceptron (EMLP) model outperformed the other algorithms in terms of accuracy, precision, F1-score, and recall, underscoring its efficacy in cardiac disease detection.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信