VAX014 Activates Tumor-Intrinsic STING and RIG-I to Promote the Development of Antitumor Immunity.

IF 5.3 2区 医学 Q1 ONCOLOGY
Kinsey L Nelson, Katherine A Reil, Shingo Tsuji, Amanda M Parikh, Mikella Robinson, Carrie D House, Kathleen L McGuire, Matthew J Giacalone
{"title":"VAX014 Activates Tumor-Intrinsic STING and RIG-I to Promote the Development of Antitumor Immunity.","authors":"Kinsey L Nelson, Katherine A Reil, Shingo Tsuji, Amanda M Parikh, Mikella Robinson, Carrie D House, Kathleen L McGuire, Matthew J Giacalone","doi":"10.1158/1535-7163.MCT-24-0509","DOIUrl":null,"url":null,"abstract":"<p><p>In situ immunization (ISI) has emerged as a promising approach to bolster early phases of the cancer immunity cycle through improved T cell priming. One class of ISI agents, oncolytic viruses (OVs), has demonstrated clinical activity, but overall benefit remains limited. Mounting evidence suggests that due to their inherent vulnerability to antiviral effects of type I interferon (IFN), OVs have limited activity in solid tumors expressing stimulator of interferon genes (STING) and/or retinoic acid-inducible gene I (RIG-I). Here, using a combination of pharmacologic, genetic, and in vivo approaches, we demonstrate that VAX014, a bacterial minicell-based oncolytic ISI agent, activates both STING and RIG-I and leverages this activity to work best in STING- and/or RIG-I-positive tumors. Intratumoral treatment of established syngeneic tumors expressing STING and RIG-I with VAX014 resulted in 100% tumor clearance in two mouse models. Antitumor activity of VAX014 was shown to be dependent on both tumor-intrinsic STING and RIG-I with additive activity stemming from host-intrinsic STING. Analysis of human solid tumor datasets demonstrated STING and RIG-I co-expression is prevalent in solid tumors and associates with clinical benefit in many indications, particularly those most amenable to intratumoral administration. These collective findings differentiate VAX014 from OVs by elucidating the ability of this agent to elicit antitumor activity in STING- and/or RIG-I-positive solid tumors and provide evidence that STING/RIG-I agonism is part of VAX014's mechanism of action. Taken together, this work supports the ongoing clinical investigation of VAX014 treatment as an alternative to OV therapy in patients with solid tumors.</p>","PeriodicalId":18791,"journal":{"name":"Molecular Cancer Therapeutics","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1535-7163.MCT-24-0509","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In situ immunization (ISI) has emerged as a promising approach to bolster early phases of the cancer immunity cycle through improved T cell priming. One class of ISI agents, oncolytic viruses (OVs), has demonstrated clinical activity, but overall benefit remains limited. Mounting evidence suggests that due to their inherent vulnerability to antiviral effects of type I interferon (IFN), OVs have limited activity in solid tumors expressing stimulator of interferon genes (STING) and/or retinoic acid-inducible gene I (RIG-I). Here, using a combination of pharmacologic, genetic, and in vivo approaches, we demonstrate that VAX014, a bacterial minicell-based oncolytic ISI agent, activates both STING and RIG-I and leverages this activity to work best in STING- and/or RIG-I-positive tumors. Intratumoral treatment of established syngeneic tumors expressing STING and RIG-I with VAX014 resulted in 100% tumor clearance in two mouse models. Antitumor activity of VAX014 was shown to be dependent on both tumor-intrinsic STING and RIG-I with additive activity stemming from host-intrinsic STING. Analysis of human solid tumor datasets demonstrated STING and RIG-I co-expression is prevalent in solid tumors and associates with clinical benefit in many indications, particularly those most amenable to intratumoral administration. These collective findings differentiate VAX014 from OVs by elucidating the ability of this agent to elicit antitumor activity in STING- and/or RIG-I-positive solid tumors and provide evidence that STING/RIG-I agonism is part of VAX014's mechanism of action. Taken together, this work supports the ongoing clinical investigation of VAX014 treatment as an alternative to OV therapy in patients with solid tumors.

VAX014 激活肿瘤内在 STING 和 RIG-I 促进抗肿瘤免疫的发展
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.20
自引率
1.80%
发文量
331
审稿时长
3 months
期刊介绍: Molecular Cancer Therapeutics will focus on basic research that has implications for cancer therapeutics in the following areas: Experimental Cancer Therapeutics, Identification of Molecular Targets, Targets for Chemoprevention, New Models, Cancer Chemistry and Drug Discovery, Molecular and Cellular Pharmacology, Molecular Classification of Tumors, and Bioinformatics and Computational Molecular Biology. The journal provides a publication forum for these emerging disciplines that is focused specifically on cancer research. Papers are stringently reviewed and only those that report results of novel, timely, and significant research and meet high standards of scientific merit will be accepted for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信