Revealing the therapeutic targets, mechanisms, and heterogeneity of Huatan Jieyu Granules for Parkinson's disease through single-cell sequencing

IF 3.1 3区 医学 Q2 CHEMISTRY, ANALYTICAL
Sijia Zhu , Meijun Liu , Shiyu Han , Jingyi Zhu, Xinmin Deng, Yanyan Tian, Dongdong Yang
{"title":"Revealing the therapeutic targets, mechanisms, and heterogeneity of Huatan Jieyu Granules for Parkinson's disease through single-cell sequencing","authors":"Sijia Zhu ,&nbsp;Meijun Liu ,&nbsp;Shiyu Han ,&nbsp;Jingyi Zhu,&nbsp;Xinmin Deng,&nbsp;Yanyan Tian,&nbsp;Dongdong Yang","doi":"10.1016/j.jpba.2025.116679","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The incidence of Parkinson's disease (PD) increases with age. Previous pharmacological studies have shown the potential of Huatan Jieyu Granules (HGs) for the treatment of PD, but the exact mechanisms remain unclear. This study aimed to explore the effects of herbal treatment on PD using mouse models and single-cell sequencing.</div></div><div><h3>Methods</h3><div>In this study, we established in vivo 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD models in mice. Motor function was assessed through behavioral tests. Immunofluorescence was used to examine dopaminergic neuron loss. Single-cell sequencing was performed on mice from the blank, PD model and medication groups. After quality control and dimensionality reduction of the single-cell data, cells were clustered, and different cell types were identified. We then identified the intersection of differentially expressed genes (DEGs1) in the blank and model groups and DEGs2 in the model and medication groups, yielding intersected DEGs. Key drug targets were identified by intersecting these DEGs with the drug targets of active ingredients in TCM. Topological analysis of the PPI network was used to identify key genes. Cell types exhibiting high expression of these genes were designated as key cells. These key cells were subjected to cellular communication analysis and temporal analysis, after which they were classified into subtypes.</div></div><div><h3>Results</h3><div>HGs significantly improved motor function and prevented dopaminergic neuronal loss in the substantia nigra (SN) of MPTP-treated mice. A total of 34 cell clusters were delineated, with 9 cell types identified, including oligodendrocytes (oligo), neurons, and T cells. We identified 758 intersected DEGs and 13 key drug targets, including Egfr, Ntrk2, Grm5, Htr2c, Bcl2l1. Oligo and neuronal cells were identified as key cells due to higher expression levels of these key genes. In the cellular communication analysis, oligo-neuronal interactions in the blank and model groups, and oligo-OPC and oligo-T cell interactions in the medication group, exhibited the most receptor-ligand interactions. In temporal analysis, both oligo and neuronal cells were differentiated into 9 states, with C1 being the most differentiated.</div></div><div><h3>Conclusion</h3><div>HGs demonstrate neuroprotective effects in MPTP-treated mice. Using single-cell sequencing, we identified five key genes (Egfr, Ntrk2, Grm5, Htr2c, Bcl2l1) and two key cell types (oligo and neuronal) related to HGs in PD. These findings provided a foundation for understanding the molecular mechanisms by which HGs treat PD.</div></div>","PeriodicalId":16685,"journal":{"name":"Journal of pharmaceutical and biomedical analysis","volume":"257 ","pages":"Article 116679"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical and biomedical analysis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0731708525000202","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

The incidence of Parkinson's disease (PD) increases with age. Previous pharmacological studies have shown the potential of Huatan Jieyu Granules (HGs) for the treatment of PD, but the exact mechanisms remain unclear. This study aimed to explore the effects of herbal treatment on PD using mouse models and single-cell sequencing.

Methods

In this study, we established in vivo 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD models in mice. Motor function was assessed through behavioral tests. Immunofluorescence was used to examine dopaminergic neuron loss. Single-cell sequencing was performed on mice from the blank, PD model and medication groups. After quality control and dimensionality reduction of the single-cell data, cells were clustered, and different cell types were identified. We then identified the intersection of differentially expressed genes (DEGs1) in the blank and model groups and DEGs2 in the model and medication groups, yielding intersected DEGs. Key drug targets were identified by intersecting these DEGs with the drug targets of active ingredients in TCM. Topological analysis of the PPI network was used to identify key genes. Cell types exhibiting high expression of these genes were designated as key cells. These key cells were subjected to cellular communication analysis and temporal analysis, after which they were classified into subtypes.

Results

HGs significantly improved motor function and prevented dopaminergic neuronal loss in the substantia nigra (SN) of MPTP-treated mice. A total of 34 cell clusters were delineated, with 9 cell types identified, including oligodendrocytes (oligo), neurons, and T cells. We identified 758 intersected DEGs and 13 key drug targets, including Egfr, Ntrk2, Grm5, Htr2c, Bcl2l1. Oligo and neuronal cells were identified as key cells due to higher expression levels of these key genes. In the cellular communication analysis, oligo-neuronal interactions in the blank and model groups, and oligo-OPC and oligo-T cell interactions in the medication group, exhibited the most receptor-ligand interactions. In temporal analysis, both oligo and neuronal cells were differentiated into 9 states, with C1 being the most differentiated.

Conclusion

HGs demonstrate neuroprotective effects in MPTP-treated mice. Using single-cell sequencing, we identified five key genes (Egfr, Ntrk2, Grm5, Htr2c, Bcl2l1) and two key cell types (oligo and neuronal) related to HGs in PD. These findings provided a foundation for understanding the molecular mechanisms by which HGs treat PD.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
5.90%
发文量
588
审稿时长
37 days
期刊介绍: This journal is an international medium directed towards the needs of academic, clinical, government and industrial analysis by publishing original research reports and critical reviews on pharmaceutical and biomedical analysis. It covers the interdisciplinary aspects of analysis in the pharmaceutical, biomedical and clinical sciences, including developments in analytical methodology, instrumentation, computation and interpretation. Submissions on novel applications focusing on drug purity and stability studies, pharmacokinetics, therapeutic monitoring, metabolic profiling; drug-related aspects of analytical biochemistry and forensic toxicology; quality assurance in the pharmaceutical industry are also welcome. Studies from areas of well established and poorly selective methods, such as UV-VIS spectrophotometry (including derivative and multi-wavelength measurements), basic electroanalytical (potentiometric, polarographic and voltammetric) methods, fluorimetry, flow-injection analysis, etc. are accepted for publication in exceptional cases only, if a unique and substantial advantage over presently known systems is demonstrated. The same applies to the assay of simple drug formulations by any kind of methods and the determination of drugs in biological samples based merely on spiked samples. Drug purity/stability studies should contain information on the structure elucidation of the impurities/degradants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信