A New target of ischemic ventricular arrhythmias—ITFG2

IF 4.2 3区 医学 Q1 PHARMACOLOGY & PHARMACY
Qing-ming Pan , Fang-fang Bi , Ze-hong Jing , Miao Cao , Chen Cui , Fu Liu , Li Jin , He Yi-jie , Hua Tian , Tong Yu , Wu Yun , Hong-li Shan , Yu-hong Zhou
{"title":"A New target of ischemic ventricular arrhythmias—ITFG2","authors":"Qing-ming Pan ,&nbsp;Fang-fang Bi ,&nbsp;Ze-hong Jing ,&nbsp;Miao Cao ,&nbsp;Chen Cui ,&nbsp;Fu Liu ,&nbsp;Li Jin ,&nbsp;He Yi-jie ,&nbsp;Hua Tian ,&nbsp;Tong Yu ,&nbsp;Wu Yun ,&nbsp;Hong-li Shan ,&nbsp;Yu-hong Zhou","doi":"10.1016/j.ejphar.2025.177301","DOIUrl":null,"url":null,"abstract":"<div><div>ITFG2 is an intracellular protein known to modulate the immune response of T-cells. Our previous investigation revealed that ITFG2 specifically targets ATP5b to regulate ATP energy metabolism and maintain mitochondrial function, thereby protecting the heart from ischemic injury. However, the role of ITFG2 in ischemic ventricular arrhythmias and its underlying mechanisms have not been previously reported. In this study, we found ITFG2 overexpression, induced by an adeno-associated virus serotype 9 vector, partially reduced the incidence of ischemic ventricular arrhythmias and shortened the duration of ventricular arrhythmias in mice after myocardial infarction. Conversely, shRNA-mediated knockdown of endogenous ITFG2 aggravated ischemic ventricular arrhythmias. ITFG2 overexpression also shortened the prolonged QRS complex and increased the epicardial conduction velocity in MI mice. Additionally, the hearts from ITFG2 overexpression mice exhibited a higher maximal upstroke velocity at phase 0 of transmembrane action potential compared to MI mice. Patch-clamp analyses demonstrated a 50% increase in the peak current of voltage-dependent Na<sup>+</sup> channel by ITFG2 overexpression in isolated ventricular cardiomyocytes post MI. In cultured neonatal mouse cardiomyocytes under hypoxic conditions, ITFG2 up-regulated Nav1.5 protein expression by inhibiting its ubiquitination. Co-immunoprecipitation experiments showed that ITFG2 reduces the binding affinity between NEDD4-2 and Nav1.5, thereby inhibiting Nav1.5 ubiquitination. Taken together, our data highlight the critical role of ITFG2 in reducing susceptibility to ischemic ventricular arrhythmias by down-regulating Nav1.5 ubiquitination. These findings suggest that ITFG2 may serve as a novel target for treating ischemic ventricular arrhythmias.</div></div>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":"991 ","pages":"Article 177301"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014299925000548","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

ITFG2 is an intracellular protein known to modulate the immune response of T-cells. Our previous investigation revealed that ITFG2 specifically targets ATP5b to regulate ATP energy metabolism and maintain mitochondrial function, thereby protecting the heart from ischemic injury. However, the role of ITFG2 in ischemic ventricular arrhythmias and its underlying mechanisms have not been previously reported. In this study, we found ITFG2 overexpression, induced by an adeno-associated virus serotype 9 vector, partially reduced the incidence of ischemic ventricular arrhythmias and shortened the duration of ventricular arrhythmias in mice after myocardial infarction. Conversely, shRNA-mediated knockdown of endogenous ITFG2 aggravated ischemic ventricular arrhythmias. ITFG2 overexpression also shortened the prolonged QRS complex and increased the epicardial conduction velocity in MI mice. Additionally, the hearts from ITFG2 overexpression mice exhibited a higher maximal upstroke velocity at phase 0 of transmembrane action potential compared to MI mice. Patch-clamp analyses demonstrated a 50% increase in the peak current of voltage-dependent Na+ channel by ITFG2 overexpression in isolated ventricular cardiomyocytes post MI. In cultured neonatal mouse cardiomyocytes under hypoxic conditions, ITFG2 up-regulated Nav1.5 protein expression by inhibiting its ubiquitination. Co-immunoprecipitation experiments showed that ITFG2 reduces the binding affinity between NEDD4-2 and Nav1.5, thereby inhibiting Nav1.5 ubiquitination. Taken together, our data highlight the critical role of ITFG2 in reducing susceptibility to ischemic ventricular arrhythmias by down-regulating Nav1.5 ubiquitination. These findings suggest that ITFG2 may serve as a novel target for treating ischemic ventricular arrhythmias.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.00
自引率
0.00%
发文量
572
审稿时长
34 days
期刊介绍: The European Journal of Pharmacology publishes research papers covering all aspects of experimental pharmacology with focus on the mechanism of action of structurally identified compounds affecting biological systems. The scope includes: Behavioural pharmacology Neuropharmacology and analgesia Cardiovascular pharmacology Pulmonary, gastrointestinal and urogenital pharmacology Endocrine pharmacology Immunopharmacology and inflammation Molecular and cellular pharmacology Regenerative pharmacology Biologicals and biotherapeutics Translational pharmacology Nutriceutical pharmacology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信