To describe the subsets of malignant epithelial cells in gastric cancer, their developmental trajectories and drug resistance characteristics.

IF 2.8 4区 医学 Q3 ENDOCRINOLOGY & METABOLISM
Tingting Xu, Tianying Zhang, Yan Sun, Sijia Wu
{"title":"To describe the subsets of malignant epithelial cells in gastric cancer, their developmental trajectories and drug resistance characteristics.","authors":"Tingting Xu, Tianying Zhang, Yan Sun, Sijia Wu","doi":"10.1007/s12672-024-01715-5","DOIUrl":null,"url":null,"abstract":"<p><p>Gastric cancer is an aggressive malignancy characterized by significant clinical heterogeneity arising from complex genetic and environmental interactions. This study employed single-cell RNA sequencing, using the 10 × Genomics platform, to analyze 262,532 cells from gastric cancer samples, identifying 32 distinct clusters and 10 major cell types, including immune cells (e.g., T cells, monocytes) and epithelial subpopulations. Among 27 epithelial subgroups, five malignant subpopulations were identified, each defined by unique marker gene expressions and playing diverse roles in tumor progression. Developmental trajectory analysis revealed potential stem-like characteristics in certain clusters, suggesting their involvement in therapeutic resistance and disease recurrence. Cell-cell communication analysis uncovered a dynamic network of interactions within the tumor microenvironment, potentially influencing tumor growth and metastasis. Differential gene expression analysis identified key genes (LDHA, GPC3, MIF, CD44, and TFF3) that were used to construct a prognostic risk score model. This model demonstrated robust predictive power, achieving AUC values of 0.77, 0.77, and 0.76 for 1-, 3-, and 5-year overall survival in the TCGA training dataset, with validation across independent cohorts. These findings deepen our understanding of gastric cancer's cellular and molecular heterogeneity, offering insights into potential therapeutic targets and biomarkers. By facilitating the development of targeted therapies and personalized treatment strategies, these results hold promise for improving clinical outcomes in gastric cancer patients.</p>","PeriodicalId":11148,"journal":{"name":"Discover. Oncology","volume":"16 1","pages":"93"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover. Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12672-024-01715-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Gastric cancer is an aggressive malignancy characterized by significant clinical heterogeneity arising from complex genetic and environmental interactions. This study employed single-cell RNA sequencing, using the 10 × Genomics platform, to analyze 262,532 cells from gastric cancer samples, identifying 32 distinct clusters and 10 major cell types, including immune cells (e.g., T cells, monocytes) and epithelial subpopulations. Among 27 epithelial subgroups, five malignant subpopulations were identified, each defined by unique marker gene expressions and playing diverse roles in tumor progression. Developmental trajectory analysis revealed potential stem-like characteristics in certain clusters, suggesting their involvement in therapeutic resistance and disease recurrence. Cell-cell communication analysis uncovered a dynamic network of interactions within the tumor microenvironment, potentially influencing tumor growth and metastasis. Differential gene expression analysis identified key genes (LDHA, GPC3, MIF, CD44, and TFF3) that were used to construct a prognostic risk score model. This model demonstrated robust predictive power, achieving AUC values of 0.77, 0.77, and 0.76 for 1-, 3-, and 5-year overall survival in the TCGA training dataset, with validation across independent cohorts. These findings deepen our understanding of gastric cancer's cellular and molecular heterogeneity, offering insights into potential therapeutic targets and biomarkers. By facilitating the development of targeted therapies and personalized treatment strategies, these results hold promise for improving clinical outcomes in gastric cancer patients.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Discover. Oncology
Discover. Oncology Medicine-Endocrinology, Diabetes and Metabolism
CiteScore
2.40
自引率
9.10%
发文量
122
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信