An easy-to-use three-dimensional protein-structure-prediction online platform "DPL3D" based on deep learning algorithms

IF 2.7 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yunlong Gao , He Wang , Jiapeng Zhou , Yan Yang
{"title":"An easy-to-use three-dimensional protein-structure-prediction online platform \"DPL3D\" based on deep learning algorithms","authors":"Yunlong Gao ,&nbsp;He Wang ,&nbsp;Jiapeng Zhou ,&nbsp;Yan Yang","doi":"10.1016/j.crstbi.2024.100163","DOIUrl":null,"url":null,"abstract":"<div><div>The change in the three-dimensional (3D) structure of a protein can affect its own function or interaction with other protein(s), which may lead to disease(s). Gene mutations, especially missense mutations, are the main cause of changes in protein structure. Due to the lack of protein crystal structure data, about three-quarters of human mutant proteins cannot be predicted or accurately predicted, and the pathogenicity of missense mutations can only be indirectly evaluated by evolutionary conservation. Recently, many computational methods have been developed to predict protein 3D structures with accuracy comparable to experiments. This progress enables the information of structural biology to be further utilized by clinicians. Thus, we developed a user-friendly platform named DPL3D (<span><span>http://nsbio.tech:3000</span><svg><path></path></svg></span>) which can predict and visualize the 3D structure of mutant proteins. The crystal structure and other information of proteins were downloaded together with the software including AlphaFold 2, RoseTTAFold, RoseTTAFold All-Atom, and trRosettaX-Single. We implemented a query module for 210,180 molecular structures, including 52,248 human proteins. Visualization of protein two-dimensional (2D) and 3D structure prediction can be generated via LiteMol automatically or manually and interactively. This platform will allow users to easily and quickly retrieve large-scale structural information for biological discovery.</div></div>","PeriodicalId":10870,"journal":{"name":"Current Research in Structural Biology","volume":"9 ","pages":"Article 100163"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761317/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Structural Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665928X24000400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The change in the three-dimensional (3D) structure of a protein can affect its own function or interaction with other protein(s), which may lead to disease(s). Gene mutations, especially missense mutations, are the main cause of changes in protein structure. Due to the lack of protein crystal structure data, about three-quarters of human mutant proteins cannot be predicted or accurately predicted, and the pathogenicity of missense mutations can only be indirectly evaluated by evolutionary conservation. Recently, many computational methods have been developed to predict protein 3D structures with accuracy comparable to experiments. This progress enables the information of structural biology to be further utilized by clinicians. Thus, we developed a user-friendly platform named DPL3D (http://nsbio.tech:3000) which can predict and visualize the 3D structure of mutant proteins. The crystal structure and other information of proteins were downloaded together with the software including AlphaFold 2, RoseTTAFold, RoseTTAFold All-Atom, and trRosettaX-Single. We implemented a query module for 210,180 molecular structures, including 52,248 human proteins. Visualization of protein two-dimensional (2D) and 3D structure prediction can be generated via LiteMol automatically or manually and interactively. This platform will allow users to easily and quickly retrieve large-scale structural information for biological discovery.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
33
审稿时长
104 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信