{"title":"An easy-to-use three-dimensional protein-structure-prediction online platform \"DPL3D\" based on deep learning algorithms","authors":"Yunlong Gao , He Wang , Jiapeng Zhou , Yan Yang","doi":"10.1016/j.crstbi.2024.100163","DOIUrl":null,"url":null,"abstract":"<div><div>The change in the three-dimensional (3D) structure of a protein can affect its own function or interaction with other protein(s), which may lead to disease(s). Gene mutations, especially missense mutations, are the main cause of changes in protein structure. Due to the lack of protein crystal structure data, about three-quarters of human mutant proteins cannot be predicted or accurately predicted, and the pathogenicity of missense mutations can only be indirectly evaluated by evolutionary conservation. Recently, many computational methods have been developed to predict protein 3D structures with accuracy comparable to experiments. This progress enables the information of structural biology to be further utilized by clinicians. Thus, we developed a user-friendly platform named DPL3D (<span><span>http://nsbio.tech:3000</span><svg><path></path></svg></span>) which can predict and visualize the 3D structure of mutant proteins. The crystal structure and other information of proteins were downloaded together with the software including AlphaFold 2, RoseTTAFold, RoseTTAFold All-Atom, and trRosettaX-Single. We implemented a query module for 210,180 molecular structures, including 52,248 human proteins. Visualization of protein two-dimensional (2D) and 3D structure prediction can be generated via LiteMol automatically or manually and interactively. This platform will allow users to easily and quickly retrieve large-scale structural information for biological discovery.</div></div>","PeriodicalId":10870,"journal":{"name":"Current Research in Structural Biology","volume":"9 ","pages":"Article 100163"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761317/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Structural Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665928X24000400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The change in the three-dimensional (3D) structure of a protein can affect its own function or interaction with other protein(s), which may lead to disease(s). Gene mutations, especially missense mutations, are the main cause of changes in protein structure. Due to the lack of protein crystal structure data, about three-quarters of human mutant proteins cannot be predicted or accurately predicted, and the pathogenicity of missense mutations can only be indirectly evaluated by evolutionary conservation. Recently, many computational methods have been developed to predict protein 3D structures with accuracy comparable to experiments. This progress enables the information of structural biology to be further utilized by clinicians. Thus, we developed a user-friendly platform named DPL3D (http://nsbio.tech:3000) which can predict and visualize the 3D structure of mutant proteins. The crystal structure and other information of proteins were downloaded together with the software including AlphaFold 2, RoseTTAFold, RoseTTAFold All-Atom, and trRosettaX-Single. We implemented a query module for 210,180 molecular structures, including 52,248 human proteins. Visualization of protein two-dimensional (2D) and 3D structure prediction can be generated via LiteMol automatically or manually and interactively. This platform will allow users to easily and quickly retrieve large-scale structural information for biological discovery.