M6A -mediated lncRNA SCIRT stability promotes NSCLC progression through binding to SFPQ and activating the PI3K/Akt pathway.

IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yongming Cheng, Rong Han, Meiqi Wang, Shuqing Wang, Junliang Zhou, Jianyi Wang, Hui Xu
{"title":"M<sup>6</sup>A -mediated lncRNA SCIRT stability promotes NSCLC progression through binding to SFPQ and activating the PI3K/Akt pathway.","authors":"Yongming Cheng, Rong Han, Meiqi Wang, Shuqing Wang, Junliang Zhou, Jianyi Wang, Hui Xu","doi":"10.1007/s00018-025-05594-z","DOIUrl":null,"url":null,"abstract":"<p><p>Non-small cell lung cancer (NSCLC) has emerged as one of the most prevalent malignancies worldwide. N6-methyladenosine (m<sup>6</sup>A) methylation, a pervasive epigenetic modification in long noncoding RNAs (lncRNAs), plays a crucial role in NSCLC progression. Here, we report that m<sup>6</sup>A modification and the expression of the lncRNA stem cell inhibitory RNA transcript (SCIRT) was significantly upregulated in NSCLC tissues and cells. Functional analysis revealed that SCIRT enhanced NSCLC cell proliferation, migration, invasion, and epithelial‒mesenchymal transition. The m<sup>6</sup>A modification of SCIRT can be installed by METTL3, which enhanced the stability of this lncRNA. Notably, SCIRT overexpression in response to DNA double-strand breaks (DSBs) sensitized cells to camptothecin (CPT) and impairs DNA homologous recombination repair. SCIRT directly interacted with SFPQ in vitro and was primarily localized in the nucleus. Furthermore, ectopic SCIRT expression upregulated SFPQ and activated the PI3K/Akt pathway following CPT treatment, suggesting an unexpected role of SCIRT in facilitating SFPQ-mediated DSB repair. In brief, our findings highlight the oncogenic role of SCIRT in NSCLC by binding SFPQ and activating PI3K/Akt signaling, presenting a promising therapeutic target for personalized NSCLC treatment.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"63"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772919/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-025-05594-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Non-small cell lung cancer (NSCLC) has emerged as one of the most prevalent malignancies worldwide. N6-methyladenosine (m6A) methylation, a pervasive epigenetic modification in long noncoding RNAs (lncRNAs), plays a crucial role in NSCLC progression. Here, we report that m6A modification and the expression of the lncRNA stem cell inhibitory RNA transcript (SCIRT) was significantly upregulated in NSCLC tissues and cells. Functional analysis revealed that SCIRT enhanced NSCLC cell proliferation, migration, invasion, and epithelial‒mesenchymal transition. The m6A modification of SCIRT can be installed by METTL3, which enhanced the stability of this lncRNA. Notably, SCIRT overexpression in response to DNA double-strand breaks (DSBs) sensitized cells to camptothecin (CPT) and impairs DNA homologous recombination repair. SCIRT directly interacted with SFPQ in vitro and was primarily localized in the nucleus. Furthermore, ectopic SCIRT expression upregulated SFPQ and activated the PI3K/Akt pathway following CPT treatment, suggesting an unexpected role of SCIRT in facilitating SFPQ-mediated DSB repair. In brief, our findings highlight the oncogenic role of SCIRT in NSCLC by binding SFPQ and activating PI3K/Akt signaling, presenting a promising therapeutic target for personalized NSCLC treatment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cellular and Molecular Life Sciences
Cellular and Molecular Life Sciences 生物-生化与分子生物学
CiteScore
13.20
自引率
1.20%
发文量
546
审稿时长
1.0 months
期刊介绍: Journal Name: Cellular and Molecular Life Sciences (CMLS) Location: Basel, Switzerland Focus: Multidisciplinary journal Publishes research articles, reviews, multi-author reviews, and visions & reflections articles Coverage: Latest aspects of biological and biomedical research Areas include: Biochemistry and molecular biology Cell biology Molecular and cellular aspects of biomedicine Neuroscience Pharmacology Immunology Additional Features: Welcomes comments on any article published in CMLS Accepts suggestions for topics to be covered
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信