Victor J. Brand MD, Maaike T.W. Milder PhD, Miranda E.M.C. Christianen MD, PhD, Kim C. de Vries MD, Mischa S. Hoogeman PhD, Luca Incrocci MD, PhD, Femke E. Froklage MD, PhD
{"title":"First-in-Men Online Adaptive Robotic Stereotactic Body Radiation Therapy: Toward Ultrahypofractionation for High-Risk Prostate Cancer Patients","authors":"Victor J. Brand MD, Maaike T.W. Milder PhD, Miranda E.M.C. Christianen MD, PhD, Kim C. de Vries MD, Mischa S. Hoogeman PhD, Luca Incrocci MD, PhD, Femke E. Froklage MD, PhD","doi":"10.1016/j.adro.2024.101701","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>Ultrahypofractionation presents challenges for a subset of high-risk prostate cancer patients due to the large planning target volume (PTV) margin required for the seminal vesicles. Online adaptive radiation therapy could potentially reduce this margin. This paper focuses on the development, preclinical validation, and clinical testing of online adaptive robotic stereotactic body radiation therapy for this patient group.</div></div><div><h3>Methods and Materials</h3><div>An online adaptive workflow was developed for the CyberKnife with integrated in-room CT-on-rails. Preclinical validation involved comparing deep learning–based auto-contouring with deformable or rigid contour propagation in terms of subsequent editing time. A fast treatment planning method was implemented and compared with the conventional method in terms of optimization time and adherence to planning constraints. Clinical testing was conducted in the first study patients of the UPRATE trial, which investigates the feasibility of seminal vesicle PTV margin reduction in low-volume metastasized prostate cancer patients. Treatment time and patient experience were recorded.</div></div><div><h3>Results</h3><div>Rigid registration for prostate and deep-learning auto-contouring for seminal vesicles and organs at risk were selected based on editing time and robustness for anatomic changes. The fast treatment planning method reduced the optimization time from 10 to 3.5 minutes (<em>P</em> = .005). No significant differences in dose parameters were observed compared with the conventional plans. During clinical testing, 53 of 60 fast treatment plans adhered to the planning constraints, and all 60 were clinically accepted and delivered. The average total treatment time was 67.7 minutes, showing a downward trend. The treatment was well-experienced overall.</div></div><div><h3>Conclusions</h3><div>Online adaptive stereotactic body radiation therapy using CyberKnife with integrated CT-on-rails is clinically feasible for prostate cancer patients with seminal vesicles included in the target volume. The UPRATE trial outcome will reveal the extent to which online adaptation can reduce the PTV margin of the seminal vesicles.</div></div>","PeriodicalId":7390,"journal":{"name":"Advances in Radiation Oncology","volume":"10 2","pages":"Article 101701"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758839/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452109424002641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Ultrahypofractionation presents challenges for a subset of high-risk prostate cancer patients due to the large planning target volume (PTV) margin required for the seminal vesicles. Online adaptive radiation therapy could potentially reduce this margin. This paper focuses on the development, preclinical validation, and clinical testing of online adaptive robotic stereotactic body radiation therapy for this patient group.
Methods and Materials
An online adaptive workflow was developed for the CyberKnife with integrated in-room CT-on-rails. Preclinical validation involved comparing deep learning–based auto-contouring with deformable or rigid contour propagation in terms of subsequent editing time. A fast treatment planning method was implemented and compared with the conventional method in terms of optimization time and adherence to planning constraints. Clinical testing was conducted in the first study patients of the UPRATE trial, which investigates the feasibility of seminal vesicle PTV margin reduction in low-volume metastasized prostate cancer patients. Treatment time and patient experience were recorded.
Results
Rigid registration for prostate and deep-learning auto-contouring for seminal vesicles and organs at risk were selected based on editing time and robustness for anatomic changes. The fast treatment planning method reduced the optimization time from 10 to 3.5 minutes (P = .005). No significant differences in dose parameters were observed compared with the conventional plans. During clinical testing, 53 of 60 fast treatment plans adhered to the planning constraints, and all 60 were clinically accepted and delivered. The average total treatment time was 67.7 minutes, showing a downward trend. The treatment was well-experienced overall.
Conclusions
Online adaptive stereotactic body radiation therapy using CyberKnife with integrated CT-on-rails is clinically feasible for prostate cancer patients with seminal vesicles included in the target volume. The UPRATE trial outcome will reveal the extent to which online adaptation can reduce the PTV margin of the seminal vesicles.
期刊介绍:
The purpose of Advances is to provide information for clinicians who use radiation therapy by publishing: Clinical trial reports and reanalyses. Basic science original reports. Manuscripts examining health services research, comparative and cost effectiveness research, and systematic reviews. Case reports documenting unusual problems and solutions. High quality multi and single institutional series, as well as other novel retrospective hypothesis generating series. Timely critical reviews on important topics in radiation oncology, such as side effects. Articles reporting the natural history of disease and patterns of failure, particularly as they relate to treatment volume delineation. Articles on safety and quality in radiation therapy. Essays on clinical experience. Articles on practice transformation in radiation oncology, in particular: Aspects of health policy that may impact the future practice of radiation oncology. How information technology, such as data analytics and systems innovations, will change radiation oncology practice. Articles on imaging as they relate to radiation therapy treatment.