David Bushiri Pwesombo, Carsten Beese, Christopher Schmied, Han Sun
{"title":"Semisupervised Contrastive Learning for Bioactivity Prediction Using Cell Painting Image Data.","authors":"David Bushiri Pwesombo, Carsten Beese, Christopher Schmied, Han Sun","doi":"10.1021/acs.jcim.4c00835","DOIUrl":null,"url":null,"abstract":"<p><p>Morphological profiling has recently demonstrated remarkable potential for identifying the biological activities of small molecules. Alongside the fully supervised and self-supervised machine learning methods recently proposed for bioactivity prediction from Cell Painting image data, we introduce here a semisupervised contrastive (SemiSupCon) learning approach. This approach combines the strengths of using biological annotations in supervised contrastive learning and leveraging large unannotated image data sets with self-supervised contrastive learning. SemiSupCon enhances downstream prediction performance of classifying MeSH pharmacological classifications from PubChem, as well as mode of action and biological target annotations from the Drug Repurposing Hub across two publicly available Cell Painting data sets. Notably, our approach has effectively predicted the biological activities of several unannotated compounds, and these findings were validated through literature searches. This demonstrates that our approach can potentially expedite the exploration of biological activity based on Cell Painting image data with minimal human intervention.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"65 2","pages":"528-543"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c00835","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Morphological profiling has recently demonstrated remarkable potential for identifying the biological activities of small molecules. Alongside the fully supervised and self-supervised machine learning methods recently proposed for bioactivity prediction from Cell Painting image data, we introduce here a semisupervised contrastive (SemiSupCon) learning approach. This approach combines the strengths of using biological annotations in supervised contrastive learning and leveraging large unannotated image data sets with self-supervised contrastive learning. SemiSupCon enhances downstream prediction performance of classifying MeSH pharmacological classifications from PubChem, as well as mode of action and biological target annotations from the Drug Repurposing Hub across two publicly available Cell Painting data sets. Notably, our approach has effectively predicted the biological activities of several unannotated compounds, and these findings were validated through literature searches. This demonstrates that our approach can potentially expedite the exploration of biological activity based on Cell Painting image data with minimal human intervention.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.