Qingyu Bian, Zheyuan Shen, Jian Gao, Liteng Shen, Yang Lu, Qingnan Zhang, Roufen Chen, Donghang Xu, Tao Liu, Jinxin Che, Yan Lu, Xiaowu Dong
{"title":"PPI-CoAttNet: A Web Server for Protein-Protein Interaction Tasks Using a Coattention Model.","authors":"Qingyu Bian, Zheyuan Shen, Jian Gao, Liteng Shen, Yang Lu, Qingnan Zhang, Roufen Chen, Donghang Xu, Tao Liu, Jinxin Che, Yan Lu, Xiaowu Dong","doi":"10.1021/acs.jcim.4c01365","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting protein-protein interactions (PPIs) is crucial for advancing drug discovery. Despite the proposal of numerous advanced computational methods, these approaches often suffer from poor usability for biologists and lack generalization. In this study, we designed a deep learning model based on a coattention mechanism that was capable of both PPI and site prediction and used this model as the foundation for PPI-CoAttNet, a user-friendly, multifunctional web server for PPI prediction. This platform provides comprehensive services for online PPI model training, PPI and site prediction, and prediction of interactions with proteins associated with highly prevalent cancers. In our <i>Homo sapiens</i> test set for PPI prediction, PPI-CoAttNet achieved an AUC of 0.9841 and an F1 score of 0.9440, outperforming most state-of-the-art models. Additionally, these results are generated in real time, delivering outcomes within minutes. We also evaluated PPI-CoAttNet for downstream tasks, including novel E3 ligase scoring, demonstrating outstanding accuracy. We believe that this tool will empower researchers, especially those without computational expertise, to leverage AI for accelerating drug development.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"65 2","pages":"461-471"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01365","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting protein-protein interactions (PPIs) is crucial for advancing drug discovery. Despite the proposal of numerous advanced computational methods, these approaches often suffer from poor usability for biologists and lack generalization. In this study, we designed a deep learning model based on a coattention mechanism that was capable of both PPI and site prediction and used this model as the foundation for PPI-CoAttNet, a user-friendly, multifunctional web server for PPI prediction. This platform provides comprehensive services for online PPI model training, PPI and site prediction, and prediction of interactions with proteins associated with highly prevalent cancers. In our Homo sapiens test set for PPI prediction, PPI-CoAttNet achieved an AUC of 0.9841 and an F1 score of 0.9440, outperforming most state-of-the-art models. Additionally, these results are generated in real time, delivering outcomes within minutes. We also evaluated PPI-CoAttNet for downstream tasks, including novel E3 ligase scoring, demonstrating outstanding accuracy. We believe that this tool will empower researchers, especially those without computational expertise, to leverage AI for accelerating drug development.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.