{"title":"PathInHydro, a Set of Machine Learning Models to Identify Unbinding Pathways of Gas Molecules in [NiFe] Hydrogenases.","authors":"Farzin Sohraby, Jing-Yao Guo, Ariane Nunes-Alves","doi":"10.1021/acs.jcim.4c01656","DOIUrl":null,"url":null,"abstract":"<p><p>Machine learning (ML) is a powerful tool for the automated data analysis of molecular dynamics (MD) simulations. Recent studies showed that ML models can be used to identify protein-ligand unbinding pathways and understand the underlying mechanism. To expedite the examination of MD simulations, we constructed PathInHydro, a set of supervised ML models capable of automatically assigning unbinding pathways for the dissociation of gas molecules from [NiFe] hydrogenases, using the unbinding trajectories of CO and H<sub>2</sub> from<i>Desulfovibrio fructosovorans</i> [NiFe] hydrogenase as a training set. [NiFe] hydrogenases are receiving increasing attention in biotechnology due to their high efficiency in the generation of H<sub>2</sub>, which is considered by many to be the fuel of the future. However, some of these enzymes are sensitive to O<sub>2</sub> and CO. Many efforts have been made to rectify this problem and generate air-stable enzymes by introducing mutations that selectively regulate the access of specific gas molecules to the catalytic site. Herein, we showcase the performance of PathInHydro for the identification of unbinding paths in different test sets, including another gas molecule and a different [NiFe] hydrogenase, which demonstrates its feasibility for the trajectory analysis of a diversity of gas molecules along enzymes with mutations and sequence differences. PathInHydro allows the user to skip time-consuming manual analysis and visual inspection, facilitating data analysis for MD simulations of ligand unbinding from [NiFe] hydrogenases. The codes and data sets are available online: https://github.com/FarzinSohraby/PathInHydro.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"65 2","pages":"589-602"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01656","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning (ML) is a powerful tool for the automated data analysis of molecular dynamics (MD) simulations. Recent studies showed that ML models can be used to identify protein-ligand unbinding pathways and understand the underlying mechanism. To expedite the examination of MD simulations, we constructed PathInHydro, a set of supervised ML models capable of automatically assigning unbinding pathways for the dissociation of gas molecules from [NiFe] hydrogenases, using the unbinding trajectories of CO and H2 fromDesulfovibrio fructosovorans [NiFe] hydrogenase as a training set. [NiFe] hydrogenases are receiving increasing attention in biotechnology due to their high efficiency in the generation of H2, which is considered by many to be the fuel of the future. However, some of these enzymes are sensitive to O2 and CO. Many efforts have been made to rectify this problem and generate air-stable enzymes by introducing mutations that selectively regulate the access of specific gas molecules to the catalytic site. Herein, we showcase the performance of PathInHydro for the identification of unbinding paths in different test sets, including another gas molecule and a different [NiFe] hydrogenase, which demonstrates its feasibility for the trajectory analysis of a diversity of gas molecules along enzymes with mutations and sequence differences. PathInHydro allows the user to skip time-consuming manual analysis and visual inspection, facilitating data analysis for MD simulations of ligand unbinding from [NiFe] hydrogenases. The codes and data sets are available online: https://github.com/FarzinSohraby/PathInHydro.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.