Subgraph Topology and Dynamic Graph Topology Enhanced Graph Learning and Pairwise Feature Context Relationship Integration for Predicting Disease-Related miRNAs.

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL
Ping Xuan, Xiaoying Qi, Sentao Chen, Jing Gu, Xiuju Wang, Hui Cui, Jun Lu, Tiangang Zhang
{"title":"Subgraph Topology and Dynamic Graph Topology Enhanced Graph Learning and Pairwise Feature Context Relationship Integration for Predicting Disease-Related miRNAs.","authors":"Ping Xuan, Xiaoying Qi, Sentao Chen, Jing Gu, Xiuju Wang, Hui Cui, Jun Lu, Tiangang Zhang","doi":"10.1021/acs.jcim.4c01757","DOIUrl":null,"url":null,"abstract":"<p><p>As an increasing number of microRNAs (miRNAs) have become biomarkers of various human diseases, prediction of the candidate disease-related miRNAs is helpful for facilitating the early diagnosis of diseases. Most of the recent prediction models concentrated on learning of the features from the heterogeneous graph composed of miRNAs and diseases. However, they failed to fully exploit the subgraph structures consisting of multiple miRNA and disease nodes, and they also did not completely integrate the context relationships among the pairwise features. We proposed a prediction model, SFPred, to integrate and encode the local topologies from neighborhood subgraphs, the dynamically evolved heterogeneous graph topology, and the context among pairwise features. First, the importance of an miRNA (disease) node to another node is formulated according to the subgraphs composed of their neighbors. Second, the features of each miRNA (disease) node continuously change when the graph encoding gradually deepens for the miRNA-disease heterogeneous network. A strategy based on multi-layer perceptron (MLP) is designed to estimate the edge weights according to the changed node features and form the dynamic graph topology. Third, considering the context relationships among the features of a pair of miRNA and disease nodes, a context relationship sensitive transformer is constructed to integrate these relationships. Finally, since the previous encoding layer of the transformer contains more detailed features of the pairwise, we present a multiperspective residual strategy to supplement the detailed features to the following encoding layer from the channel perspective and the feature one, respectively. The extensive experiments confirmed that SFPred outperforms eight state-of-the-art methods for the prediction of miRNA-disease associations, and the ablation experiments validate the effectiveness of the proposed innovations. The recall rates for the top-ranked candidate miRNAs related to the diseases and the case studies on three diseases indicate SFPred's ability in screening the reliable candidates for subsequent biological experiments.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01757","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

As an increasing number of microRNAs (miRNAs) have become biomarkers of various human diseases, prediction of the candidate disease-related miRNAs is helpful for facilitating the early diagnosis of diseases. Most of the recent prediction models concentrated on learning of the features from the heterogeneous graph composed of miRNAs and diseases. However, they failed to fully exploit the subgraph structures consisting of multiple miRNA and disease nodes, and they also did not completely integrate the context relationships among the pairwise features. We proposed a prediction model, SFPred, to integrate and encode the local topologies from neighborhood subgraphs, the dynamically evolved heterogeneous graph topology, and the context among pairwise features. First, the importance of an miRNA (disease) node to another node is formulated according to the subgraphs composed of their neighbors. Second, the features of each miRNA (disease) node continuously change when the graph encoding gradually deepens for the miRNA-disease heterogeneous network. A strategy based on multi-layer perceptron (MLP) is designed to estimate the edge weights according to the changed node features and form the dynamic graph topology. Third, considering the context relationships among the features of a pair of miRNA and disease nodes, a context relationship sensitive transformer is constructed to integrate these relationships. Finally, since the previous encoding layer of the transformer contains more detailed features of the pairwise, we present a multiperspective residual strategy to supplement the detailed features to the following encoding layer from the channel perspective and the feature one, respectively. The extensive experiments confirmed that SFPred outperforms eight state-of-the-art methods for the prediction of miRNA-disease associations, and the ablation experiments validate the effectiveness of the proposed innovations. The recall rates for the top-ranked candidate miRNAs related to the diseases and the case studies on three diseases indicate SFPred's ability in screening the reliable candidates for subsequent biological experiments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信