Naphthalene Decomposition on Fe(110)─Adsorption, Dehydrogenation, Surface Carbon Formation and the Influence of Coadsorbed Oxygen

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL
Lea Hohmann, Franziska Dahlmann, Giorgio Bruno Braghin, Léonie Laviron, Layal Hussein, Jakob Martinez, Anton Harrer, Haley Robertson, Jona Guiborat, Xiaoming Hu, Jonas Weissenrieder, Klas Engvall, Jerry LaRue, Tony Hansson, Mats Göthelid, Amirreza Ghassami, Dan J. Harding, Henrik Öström
{"title":"Naphthalene Decomposition on Fe(110)─Adsorption, Dehydrogenation, Surface Carbon Formation and the Influence of Coadsorbed Oxygen","authors":"Lea Hohmann, Franziska Dahlmann, Giorgio Bruno Braghin, Léonie Laviron, Layal Hussein, Jakob Martinez, Anton Harrer, Haley Robertson, Jona Guiborat, Xiaoming Hu, Jonas Weissenrieder, Klas Engvall, Jerry LaRue, Tony Hansson, Mats Göthelid, Amirreza Ghassami, Dan J. Harding, Henrik Öström","doi":"10.1021/acs.jpcc.4c06619","DOIUrl":null,"url":null,"abstract":"Tar is an undesirable byproduct of biomass gasification, which can be removed through catalytic reforming to syngas components. Iron is a promising, abundant alternative to highly active but toxic nickel catalysts. The results observed so far in catalytic studies with iron have been mixed. In this paper, the decomposition of naphthalene, a representative model compound of tar, was studied on the catalytic Fe(110) surface using temperature-programmed desorption (TPD), sum frequency generation spectroscopy (SFG), and X-ray photoelectron spectroscopy (XPS). Napthalene adsorption, dehydrogenation and the formation of surface carbon were investigated, as well as the influence of oxygen. In comparison with previous studies on Ni(111), a similar dehydrogenation activity was found for Fe(110) with two main H<sub>2</sub> TPD peaks at 450 and 550 K. The reaction of naphthalene on Fe(110) resulted in the predominant formation of carbidic and atomically adsorbed carbon on the surface, which did not dissolve into the bulk even at high temperatures. A moderately carbon-covered surface was shown to still be active toward naphthalene decomposition. Similarly to Ni(111), large amounts of oxygen inhibited the reaction but, at low oxygen doses, very high hydrogen yields were observed, suggesting that Fe(110) could be a valid alternative for tar decomposition.","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"72 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcc.4c06619","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Tar is an undesirable byproduct of biomass gasification, which can be removed through catalytic reforming to syngas components. Iron is a promising, abundant alternative to highly active but toxic nickel catalysts. The results observed so far in catalytic studies with iron have been mixed. In this paper, the decomposition of naphthalene, a representative model compound of tar, was studied on the catalytic Fe(110) surface using temperature-programmed desorption (TPD), sum frequency generation spectroscopy (SFG), and X-ray photoelectron spectroscopy (XPS). Napthalene adsorption, dehydrogenation and the formation of surface carbon were investigated, as well as the influence of oxygen. In comparison with previous studies on Ni(111), a similar dehydrogenation activity was found for Fe(110) with two main H2 TPD peaks at 450 and 550 K. The reaction of naphthalene on Fe(110) resulted in the predominant formation of carbidic and atomically adsorbed carbon on the surface, which did not dissolve into the bulk even at high temperatures. A moderately carbon-covered surface was shown to still be active toward naphthalene decomposition. Similarly to Ni(111), large amounts of oxygen inhibited the reaction but, at low oxygen doses, very high hydrogen yields were observed, suggesting that Fe(110) could be a valid alternative for tar decomposition.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信