J. Bourdelle de Micas, D. Perna, S. Fornasier, E. Dotto, S. Ieva, M. A. Barucci, J. Geem, S. Hasegawa, M. Ishiguro, K. Kitazato, D. Kuroda, E. Mazzotta Epifani, E. Palomba, M. Yoshikawa, M. Hirabayashi
{"title":"Spectral and photometric characterization of (98943) Torifune in preparation for the Hayabusa2# spacecraft flyby","authors":"J. Bourdelle de Micas, D. Perna, S. Fornasier, E. Dotto, S. Ieva, M. A. Barucci, J. Geem, S. Hasegawa, M. Ishiguro, K. Kitazato, D. Kuroda, E. Mazzotta Epifani, E. Palomba, M. Yoshikawa, M. Hirabayashi","doi":"10.1051/0004-6361/202452498","DOIUrl":null,"url":null,"abstract":"<i>Context.<i/> After a successful sample-return mission to the asteroid (162173) Ryugu, the Hayabusa2 spacecraft is currently on its way to encounter two near-Earth asteroids: (98943) Torifune (formerly known as 2001 CC21) and 1998 KY26.<i>Aims.<i/> In this article, we study the asteroid (98943) Torifune, the first object that is to be visited by the spacecraft during its extended mission. To prepare for its encounter with the spacecraft, it is crucial to study this object from Earth. We conducted several ground-based observations to characterize this asteroid and understand its mineralogy.<i>Methods.<i/> In January and February 2023, we carried out spectroscopic and photometric observations at the 2.56 m Nordic Optical Telescope, in the visible and near-infrared ranges, covering different rotational phases of the asteroid.<i>Results.<i/> Based on spectra analysis in the visible and near-infrared ranges, confirmed by the color studies, we determined that Torifune belongs to the Sq-type, according the Bus-DeMeo taxonomy. Assuming this taxonomy and its equivalent diameter (D ∼ 465 ± 15 m), we estimated the mass of this asteroid to be 1.81 ± 0.11 × 10<sup>11<sup/> kg. In term of mineralogy, we found a close match with ordinary L chondrites.<i>Conclusions.<i/> As our observations covered almost a complete rotation phase, we did not find any spectral variation at different rotational phases, meaning that there is no substantial heterogeneities on Torifune’s surface. We compared the spectral slope of (98943) Torifune with that of the S-complex members of the Lucienne family. However, further studies, especially dynamical ones, are needed to confirm whether this object originates from the Lucienne family.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"48 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202452498","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Context. After a successful sample-return mission to the asteroid (162173) Ryugu, the Hayabusa2 spacecraft is currently on its way to encounter two near-Earth asteroids: (98943) Torifune (formerly known as 2001 CC21) and 1998 KY26.Aims. In this article, we study the asteroid (98943) Torifune, the first object that is to be visited by the spacecraft during its extended mission. To prepare for its encounter with the spacecraft, it is crucial to study this object from Earth. We conducted several ground-based observations to characterize this asteroid and understand its mineralogy.Methods. In January and February 2023, we carried out spectroscopic and photometric observations at the 2.56 m Nordic Optical Telescope, in the visible and near-infrared ranges, covering different rotational phases of the asteroid.Results. Based on spectra analysis in the visible and near-infrared ranges, confirmed by the color studies, we determined that Torifune belongs to the Sq-type, according the Bus-DeMeo taxonomy. Assuming this taxonomy and its equivalent diameter (D ∼ 465 ± 15 m), we estimated the mass of this asteroid to be 1.81 ± 0.11 × 1011 kg. In term of mineralogy, we found a close match with ordinary L chondrites.Conclusions. As our observations covered almost a complete rotation phase, we did not find any spectral variation at different rotational phases, meaning that there is no substantial heterogeneities on Torifune’s surface. We compared the spectral slope of (98943) Torifune with that of the S-complex members of the Lucienne family. However, further studies, especially dynamical ones, are needed to confirm whether this object originates from the Lucienne family.
期刊介绍:
Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.