Evolutionary optimization of model merging recipes

IF 18.8 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, David Ha
{"title":"Evolutionary optimization of model merging recipes","authors":"Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, David Ha","doi":"10.1038/s42256-024-00975-8","DOIUrl":null,"url":null,"abstract":"<p>Large language models (LLMs) have become increasingly capable, but their development often requires substantial computational resources. Although model merging has emerged as a cost-effective promising approach for creating new models by combining existing ones, it currently relies on human intuition and domain knowledge, limiting its potential. Here we propose an evolutionary approach that overcomes this limitation by automatically discovering effective combinations of diverse open-source models, harnessing their collective intelligence without requiring extensive additional training data or compute. Our approach operates in both parameter space and data flow space, allowing optimization beyond just the weights of the individual models. This approach even facilitates cross-domain merging, generating models such as a Japanese LLM with math reasoning capabilities. Surprisingly, our Japanese math LLM achieved state-of-the-art performance on a variety of established Japanese LLM benchmarks, even surpassing models with substantially more parameters, despite not being explicitly trained for such tasks. Furthermore, a culturally aware Japanese vision–language model generated through our approach demonstrates its effectiveness in describing Japanese culture-specific content, outperforming previous Japanese vision–language models. This work not only contributes new state-of-the-art models back to the open-source community but also introduces a new paradigm for automated model composition, paving the way for exploring alternative, efficient approaches to foundation model development.</p>","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"38 1","pages":""},"PeriodicalIF":18.8000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1038/s42256-024-00975-8","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Large language models (LLMs) have become increasingly capable, but their development often requires substantial computational resources. Although model merging has emerged as a cost-effective promising approach for creating new models by combining existing ones, it currently relies on human intuition and domain knowledge, limiting its potential. Here we propose an evolutionary approach that overcomes this limitation by automatically discovering effective combinations of diverse open-source models, harnessing their collective intelligence without requiring extensive additional training data or compute. Our approach operates in both parameter space and data flow space, allowing optimization beyond just the weights of the individual models. This approach even facilitates cross-domain merging, generating models such as a Japanese LLM with math reasoning capabilities. Surprisingly, our Japanese math LLM achieved state-of-the-art performance on a variety of established Japanese LLM benchmarks, even surpassing models with substantially more parameters, despite not being explicitly trained for such tasks. Furthermore, a culturally aware Japanese vision–language model generated through our approach demonstrates its effectiveness in describing Japanese culture-specific content, outperforming previous Japanese vision–language models. This work not only contributes new state-of-the-art models back to the open-source community but also introduces a new paradigm for automated model composition, paving the way for exploring alternative, efficient approaches to foundation model development.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
36.90
自引率
2.10%
发文量
127
期刊介绍: Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements. To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects. Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信