Advancing HR-pQCT-based homogenised FE models with smooth structured hexahedral meshes.

Bone Pub Date : 2025-01-22 DOI:10.1016/j.bone.2025.117394
Simone Poncioni, Kurt Lippuner, Philippe Zysset
{"title":"Advancing HR-pQCT-based homogenised FE models with smooth structured hexahedral meshes.","authors":"Simone Poncioni, Kurt Lippuner, Philippe Zysset","doi":"10.1016/j.bone.2025.117394","DOIUrl":null,"url":null,"abstract":"<p><p>Nonlinear homogenised finite element (hFE) models can accurately predict stiffness and strength of ultra-distal sections of the radius and tibia using in vivo HR-pQCT images. Recent findings showed good stiffness prediction at these distal sections but a limited ability to reproduce experimental strain localisation. The coarseness of voxel-based meshes reduces the computational effort at the cost of heavily simplifying the underlying geometry of the cortex, the gradient of material properties, and the resulting strain distribution. To overcome these limitations, we present a comprehensive approach to generating fully automated, smooth, and structured hexahedral meshes for HR-pQCT scans at the distal radius and tibia. This study used three datasets to validate the proposed hFE pipeline and its short-term repeatability: ex vivo 2nd generation HR-pQCT images of 21 human radii and 25 human tibiae, and 208 in vivo images from same-day repeated scans on 39 individuals. Results show high accuracy in predicting stiffness (tibia: R<sup>2</sup>=0.94, radius: R<sup>2</sup>=0.88) and yield force (tibia: R<sup>2</sup>=0.93, radius: R<sup>2</sup>=0.95). Mesh sensitivity analysis reveals stabilisation within a ± 3 % error margin. Dice similarity coefficients between mesh and scanned image were >0.99, and good element quality was achieved across the validation datasets (tibia: S-ICN<sub>avg</sub>=0.809, radius: S-ICN<sub>avg</sub>=0.764). Along with the improved volumetric representation of distal cortical and trabecular bone geometry and the good element quality, the new pipeline shows gains in computational performance: 11.70±1.49 min for triple-stack tibia images and 11.00±0.97 min for double-stack radius images, respectively. Generating structured meshes with consistent element-to-element correspondence facilitates seamless comparison between patient models or in longitudinal settings, providing an additional clinical information.</p>","PeriodicalId":93913,"journal":{"name":"Bone","volume":" ","pages":"117394"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bone.2025.117394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nonlinear homogenised finite element (hFE) models can accurately predict stiffness and strength of ultra-distal sections of the radius and tibia using in vivo HR-pQCT images. Recent findings showed good stiffness prediction at these distal sections but a limited ability to reproduce experimental strain localisation. The coarseness of voxel-based meshes reduces the computational effort at the cost of heavily simplifying the underlying geometry of the cortex, the gradient of material properties, and the resulting strain distribution. To overcome these limitations, we present a comprehensive approach to generating fully automated, smooth, and structured hexahedral meshes for HR-pQCT scans at the distal radius and tibia. This study used three datasets to validate the proposed hFE pipeline and its short-term repeatability: ex vivo 2nd generation HR-pQCT images of 21 human radii and 25 human tibiae, and 208 in vivo images from same-day repeated scans on 39 individuals. Results show high accuracy in predicting stiffness (tibia: R2=0.94, radius: R2=0.88) and yield force (tibia: R2=0.93, radius: R2=0.95). Mesh sensitivity analysis reveals stabilisation within a ± 3 % error margin. Dice similarity coefficients between mesh and scanned image were >0.99, and good element quality was achieved across the validation datasets (tibia: S-ICNavg=0.809, radius: S-ICNavg=0.764). Along with the improved volumetric representation of distal cortical and trabecular bone geometry and the good element quality, the new pipeline shows gains in computational performance: 11.70±1.49 min for triple-stack tibia images and 11.00±0.97 min for double-stack radius images, respectively. Generating structured meshes with consistent element-to-element correspondence facilitates seamless comparison between patient models or in longitudinal settings, providing an additional clinical information.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信