The Formation and Features of Massive Vacuole Induced by Nutrient Deficiency in Human Embryonic Kidney Cells.

IF 3.3 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Dakang Sun, Xinye An, Yanli Cheng
{"title":"The Formation and Features of Massive Vacuole Induced by Nutrient Deficiency in Human Embryonic Kidney Cells.","authors":"Dakang Sun, Xinye An, Yanli Cheng","doi":"10.31083/FBL26796","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cellular vacuolization is a commonly observed phenomenon under physiological and pathological conditions. However, the mechanisms underlying vacuole formation remain largely unresolved.</p><p><strong>Methods: </strong>LysoTracker Deep Red probes and Enhanced Green Fluorescent Protein-tagged light chain 3B (LC3B) plasmids were employed to differentiate the types of massive vacuoles. By confocal microscopy, lysosome-like massive vacuoles (LysoTracker Deep Red<sup>+</sup>), autophagosome-like massive vacuoles (LC3B-enhanced green fluorescent protein (EGFP<sup>+</sup>)), and autolysosome-like massive vacuoles (LC3B-EGFP<sup>+</sup> LysoTracker Deep Red<sup>+</sup>) in starved HEK293T cells were observed.</p><p><strong>Results: </strong>In this study, we demonstrated that nutrient deficiency can induce the formation of massive vacuoles that appear highly electron-lucent in HEK293T cells. Additionally, these massive vacuoles, resulting from nutrient depletion, can originate from various organelles, including small vacuoles, autophagosomes, lysosomes, and autolysosomes. We found that massive vacuoles could form through two primary mechanisms: the accumulation of small vacuoles into larger vacuoles or the fusion of homogeneous or heterogeneous vacuoles. Further analysis revealed that the membranes of massive vacuoles, regardless of origin, were composed of a bilayer membrane structure. As the volume of the massive vacuoles increased, the cytoplasm and nucleus were displaced toward the periphery of the cells, leading to the formation of signet ring-like cells. Interestingly, we provided evidence that complete massive vacuoles or autophagosome-like massive vacuoles can be released and exist independently outside HEK293T cells.</p><p><strong>Conclusions: </strong>Nutrient deprivation induces the formation of heterogeneous, massive vacuoles in human embryonic kidney cells, some of which contribute to the development of signet ring cells, while others lead to extracellular vacuole formation.</p>","PeriodicalId":73069,"journal":{"name":"Frontiers in bioscience (Landmark edition)","volume":"30 1","pages":"26796"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioscience (Landmark edition)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31083/FBL26796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Cellular vacuolization is a commonly observed phenomenon under physiological and pathological conditions. However, the mechanisms underlying vacuole formation remain largely unresolved.

Methods: LysoTracker Deep Red probes and Enhanced Green Fluorescent Protein-tagged light chain 3B (LC3B) plasmids were employed to differentiate the types of massive vacuoles. By confocal microscopy, lysosome-like massive vacuoles (LysoTracker Deep Red+), autophagosome-like massive vacuoles (LC3B-enhanced green fluorescent protein (EGFP+)), and autolysosome-like massive vacuoles (LC3B-EGFP+ LysoTracker Deep Red+) in starved HEK293T cells were observed.

Results: In this study, we demonstrated that nutrient deficiency can induce the formation of massive vacuoles that appear highly electron-lucent in HEK293T cells. Additionally, these massive vacuoles, resulting from nutrient depletion, can originate from various organelles, including small vacuoles, autophagosomes, lysosomes, and autolysosomes. We found that massive vacuoles could form through two primary mechanisms: the accumulation of small vacuoles into larger vacuoles or the fusion of homogeneous or heterogeneous vacuoles. Further analysis revealed that the membranes of massive vacuoles, regardless of origin, were composed of a bilayer membrane structure. As the volume of the massive vacuoles increased, the cytoplasm and nucleus were displaced toward the periphery of the cells, leading to the formation of signet ring-like cells. Interestingly, we provided evidence that complete massive vacuoles or autophagosome-like massive vacuoles can be released and exist independently outside HEK293T cells.

Conclusions: Nutrient deprivation induces the formation of heterogeneous, massive vacuoles in human embryonic kidney cells, some of which contribute to the development of signet ring cells, while others lead to extracellular vacuole formation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信