HIF-1α and VEGF Immunophenotypes as Potential Biomarkers in the Prognosis and Evaluation of Treatment Efficacy of Atherosclerosis: A Systematic Review of the Literature.

IF 3.3 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Dimitra P Vageli, Panagiotis G Doukas, Dimitrios Georgiou, Michailangelos P Prokopiou, Nefeli E Ladaki, Androniki Papadopoulou, Sotirios G Doukas, Konstantina Zacharouli, Konstantinos P Makaritsis, Maria Ioannou
{"title":"HIF-1α and VEGF Immunophenotypes as Potential Biomarkers in the Prognosis and Evaluation of Treatment Efficacy of Atherosclerosis: A Systematic Review of the Literature.","authors":"Dimitra P Vageli, Panagiotis G Doukas, Dimitrios Georgiou, Michailangelos P Prokopiou, Nefeli E Ladaki, Androniki Papadopoulou, Sotirios G Doukas, Konstantina Zacharouli, Konstantinos P Makaritsis, Maria Ioannou","doi":"10.31083/FBL27004","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.</p><p><strong>Methods: </strong>We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis. We used the terms {\"Atherosclerosis\" [OR] \"Atheroma\" [OR] \"atheromatous plaque\" [OR] \"plaque atherosclerotic\"} [AND] {\"HIF-1α\"} [AND] {\"VEGF\"} from 2009 up to May 2024 and the Medline/Embase/PubMed database. We used methodological approaches to assess unbiased data [ROBIS (Risk of Bias in Systematic) tool]. We used study eligibility criteria, and data were collected and evaluated from original articles by two independent teams, judged by an independent reviewer, and reported by PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) 2020.</p><p><strong>Results: </strong>We included 34 original studies investigating 650 human specimens, 21 different cell lines, and 9 animal models. Increased HIF-1α in vascular smooth muscle cells, macrophages, or endothelial cells, under hypoxia, chronic loss of nitric oxide (NO), or reduced micro ribonucleic acid (miRNA)-17 and miR-20, is associated with the upregulation of pro-inflammatory molecules, such as interleukin-1 beta (IL-1β) or tumor necrosis factor-alpha (TNF-α), increased migration inhibitory factor of macrophages, glycolytic flux, lipid accumulation, necroptosis via miR-383, and adverse effects in atherosclerosis and plaque vulnerability. However, increased HIF-1α in lymphocytes is associated with decreased interferon-gamma (IFN-γ) and a favorable prognosis. Increased VEGF in a coronary artery, activated macrophages, or chronic exposure to methamphetamine is associated with elevated levels of serum inflammatory cells (interleukin-18; IL18), p38 mitogen-activated protein kinase (MAPK) phosphorylation, lipopolysaccharide-induced tumor necrosis factor-alpha factor (LITAF), and signal transducer and activator of transcription 6 isoform B (STAT6B) overexpression, leading to atherosclerosis progression and plaque break. However, VEGF overexpression in serum is marginally associated with an elevated risk for atherosclerosis. In contrast, stable overexpression of VEGF in macrophages correlates with reduced hyperplasia after arterial injury, reduced foam cell formation, and attenuation of atherosclerosis progression. HIF-1α/VEGF immunophenotypes reflect atherosclerosis treatment efficacy using, among others, HIF-inhibitors, statins, polyphenols, miR-497-5p, methylation modification, adenosine receptor antagonists, natural products, or glycosides.</p><p><strong>Conclusion: </strong>We present an overview of HIF-1α/VEGF expression in chronic inflammatory-related atherosclerosis disease. Exploring pathogenetic mechanisms and therapeutic options, we included several studies using variable methods to evaluate HIF-1α/VEGF immunophenotypes with controversial and innovative results. Data limitations may include the use of different survival methods. Our data support HIF-1α/VEGF immunophenotypes as potential biomarkers of atherosclerosis prognosis and treatment efficacy.</p>","PeriodicalId":73069,"journal":{"name":"Frontiers in bioscience (Landmark edition)","volume":"30 1","pages":"27004"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioscience (Landmark edition)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31083/FBL27004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.

Methods: We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis. We used the terms {"Atherosclerosis" [OR] "Atheroma" [OR] "atheromatous plaque" [OR] "plaque atherosclerotic"} [AND] {"HIF-1α"} [AND] {"VEGF"} from 2009 up to May 2024 and the Medline/Embase/PubMed database. We used methodological approaches to assess unbiased data [ROBIS (Risk of Bias in Systematic) tool]. We used study eligibility criteria, and data were collected and evaluated from original articles by two independent teams, judged by an independent reviewer, and reported by PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) 2020.

Results: We included 34 original studies investigating 650 human specimens, 21 different cell lines, and 9 animal models. Increased HIF-1α in vascular smooth muscle cells, macrophages, or endothelial cells, under hypoxia, chronic loss of nitric oxide (NO), or reduced micro ribonucleic acid (miRNA)-17 and miR-20, is associated with the upregulation of pro-inflammatory molecules, such as interleukin-1 beta (IL-1β) or tumor necrosis factor-alpha (TNF-α), increased migration inhibitory factor of macrophages, glycolytic flux, lipid accumulation, necroptosis via miR-383, and adverse effects in atherosclerosis and plaque vulnerability. However, increased HIF-1α in lymphocytes is associated with decreased interferon-gamma (IFN-γ) and a favorable prognosis. Increased VEGF in a coronary artery, activated macrophages, or chronic exposure to methamphetamine is associated with elevated levels of serum inflammatory cells (interleukin-18; IL18), p38 mitogen-activated protein kinase (MAPK) phosphorylation, lipopolysaccharide-induced tumor necrosis factor-alpha factor (LITAF), and signal transducer and activator of transcription 6 isoform B (STAT6B) overexpression, leading to atherosclerosis progression and plaque break. However, VEGF overexpression in serum is marginally associated with an elevated risk for atherosclerosis. In contrast, stable overexpression of VEGF in macrophages correlates with reduced hyperplasia after arterial injury, reduced foam cell formation, and attenuation of atherosclerosis progression. HIF-1α/VEGF immunophenotypes reflect atherosclerosis treatment efficacy using, among others, HIF-inhibitors, statins, polyphenols, miR-497-5p, methylation modification, adenosine receptor antagonists, natural products, or glycosides.

Conclusion: We present an overview of HIF-1α/VEGF expression in chronic inflammatory-related atherosclerosis disease. Exploring pathogenetic mechanisms and therapeutic options, we included several studies using variable methods to evaluate HIF-1α/VEGF immunophenotypes with controversial and innovative results. Data limitations may include the use of different survival methods. Our data support HIF-1α/VEGF immunophenotypes as potential biomarkers of atherosclerosis prognosis and treatment efficacy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信