GPR137-RAB8A activation promotes ovarian cancer development via the Hedgehog pathway.

IF 11.4 1区 医学 Q1 ONCOLOGY
Chao Tang, Lin Li, Chongying Zhu, Qiang Xu, Zihao An, Shouying Xu, Chao Lin
{"title":"GPR137-RAB8A activation promotes ovarian cancer development via the Hedgehog pathway.","authors":"Chao Tang, Lin Li, Chongying Zhu, Qiang Xu, Zihao An, Shouying Xu, Chao Lin","doi":"10.1186/s13046-025-03275-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ovarian cancer (OC) progression is one of the commonest cause of female cancer death. While treatments in clinic includes primary surgery and targeted chemotherapy, curative and survival trends in OC have not significantly improved. Thus, further investigation of the mechanisms regarding OC carcinogenesis and discovery of novel targets is of great importance.</p><p><strong>Methods: </strong>Human ovarian tissue specimens, RNA sequencing, GEPIA database and bioinformatics analyses were used to analyze the gene correlation, and to identify and validate potential downstream candidates. The biological effects of GPR137-RAB8A-Hedgehog(HH) were investigated using in vitro and in vivo models and methods including qRT-PCR, RNA stability assay, RNA immunoprecipitation assay, GLI-luciferase reporter assay, nucleo-cytoplasmic separation assay, membrane-cytoplasmic separation assay, western blot, co-immunoprecipitation, immunofluorescence staining, cell counting kit-8 assay, wound healing assay, matrigel invasion assay, colony formation assay, xenografts assay, in situ transplantation tumor model of ovarian cancer in nude mice, and immunohistochemistry staining.</p><p><strong>Results: </strong>GPR137 expression was significantly higher in collected clinical OC tissues, compared with the adjacent normal tissues. Consistently, suppression of GPR137 inhibited human SK-OV-3 and A2780 OC cell proliferation, migration, invasion, and colony formation, whereas overexpression of GPR137 in human OC HO8910 cell exerted the opposite effects on cell biological behaviors. Mechanistically, RAB8A was identified as a downstream target of GPR137, and GPR137 promotes RAB8A expression by promoting RAB8A mRNA stability. By RNA-sequencing and experiments in vitro using multiple ovarian cancer cell models as well as in vivo using subcutaneous xenografts assay and in situ transplantation ovarian cancer model in nude mice, we further demonstrated that RAB8A positively mediated OC progression through activating HH signaling pathway by disassociating the protein-protein complex formation of GLI and SuFu (Suppressor of Fused), which reciprocally enhanced GPR137 activity, forming a regulation loop between HH signaling and GPR137.</p><p><strong>Conclusions: </strong>Collectively, this study depicts the role of GPR137-RAB8A-HH cascade in the development of OC, deepening our understanding of tumor biomechanics regarding OC progression and providing novel targets for OC therapy in future.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"44 1","pages":"22"},"PeriodicalIF":11.4000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761205/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-025-03275-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Ovarian cancer (OC) progression is one of the commonest cause of female cancer death. While treatments in clinic includes primary surgery and targeted chemotherapy, curative and survival trends in OC have not significantly improved. Thus, further investigation of the mechanisms regarding OC carcinogenesis and discovery of novel targets is of great importance.

Methods: Human ovarian tissue specimens, RNA sequencing, GEPIA database and bioinformatics analyses were used to analyze the gene correlation, and to identify and validate potential downstream candidates. The biological effects of GPR137-RAB8A-Hedgehog(HH) were investigated using in vitro and in vivo models and methods including qRT-PCR, RNA stability assay, RNA immunoprecipitation assay, GLI-luciferase reporter assay, nucleo-cytoplasmic separation assay, membrane-cytoplasmic separation assay, western blot, co-immunoprecipitation, immunofluorescence staining, cell counting kit-8 assay, wound healing assay, matrigel invasion assay, colony formation assay, xenografts assay, in situ transplantation tumor model of ovarian cancer in nude mice, and immunohistochemistry staining.

Results: GPR137 expression was significantly higher in collected clinical OC tissues, compared with the adjacent normal tissues. Consistently, suppression of GPR137 inhibited human SK-OV-3 and A2780 OC cell proliferation, migration, invasion, and colony formation, whereas overexpression of GPR137 in human OC HO8910 cell exerted the opposite effects on cell biological behaviors. Mechanistically, RAB8A was identified as a downstream target of GPR137, and GPR137 promotes RAB8A expression by promoting RAB8A mRNA stability. By RNA-sequencing and experiments in vitro using multiple ovarian cancer cell models as well as in vivo using subcutaneous xenografts assay and in situ transplantation ovarian cancer model in nude mice, we further demonstrated that RAB8A positively mediated OC progression through activating HH signaling pathway by disassociating the protein-protein complex formation of GLI and SuFu (Suppressor of Fused), which reciprocally enhanced GPR137 activity, forming a regulation loop between HH signaling and GPR137.

Conclusions: Collectively, this study depicts the role of GPR137-RAB8A-HH cascade in the development of OC, deepening our understanding of tumor biomechanics regarding OC progression and providing novel targets for OC therapy in future.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
18.20
自引率
1.80%
发文量
333
审稿时长
1 months
期刊介绍: The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications. We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options. We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us. We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community. By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信