Yikai Shen, Jie Lin, Tianlu Jiang, Xusheng Shen, Ying Li, Yiwang Fu, Penghui Xu, Lang Fang, Zetian Chen, Hongxin Huang, Yiwen Xia, Zekuan Xu, Linjun Wang
{"title":"GC-derived exosomal circMAN1A2 promotes cancer progression and suppresses T-cell antitumour immunity by inhibiting FBXW11-mediated SFPQ degradation.","authors":"Yikai Shen, Jie Lin, Tianlu Jiang, Xusheng Shen, Ying Li, Yiwang Fu, Penghui Xu, Lang Fang, Zetian Chen, Hongxin Huang, Yiwen Xia, Zekuan Xu, Linjun Wang","doi":"10.1186/s13046-025-03288-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Exosomes, as extracellular membrane vesicles, play important roles in intercellular communication and can influence tumour progression. Circular RNAs (circRNAs) have been reported in various malignancies and are also important components of exosomes. However, the role of exosomal circRNAs in gastric cancer (GC) progression has not been completely clarified.</p><p><strong>Methods: </strong>The exosomal circRNAs enriched in GC were identified using exosomal circRNA sequencing. The biological function of circMAN1A2 in GC was investigated using a series of in vitro and in vivo experiments. PKH-67 staining was used to label the exosomes. The molecular mechanism of exosomal circMAN1A2 was investigated via mass spectrometry, immunoprecipitation, Western blot, and single-cell RNA-sequencing data analyses.</p><p><strong>Results: </strong>In our study, we determined that circMAN1A2 (hsa_circ_0000118) was enriched in GC-derived exosomes. Higher circMAN1A2 expression was related to poor survival in GC patients (HR = 2.917, p = 0.0120). Exosomal circMAN1A2 promoted GC progression in vitro and in vivo and suppressed the antitumour activity of T cells. Moreover, circMAN1A2 bound to SFPQ in GC cells and T cells, promoting the G1/S phase transition of the cell cycle in GC cells while inhibiting the activation of the T cell receptor signalling pathway in T cells to decrease antitumour activity. Mechanistically, circMAN1A2 competed with FBXW11 for binding to SFPQ, preventing FBXW11-mediated k48-linked ubiquitination and SFPQ protein degradation, thereby stabilizing SFPQ expression.</p><p><strong>Conclusions: </strong>Our work confirms the critical role of exosomal circMAN1A2 in the progression and immunosuppression of GC. This novel axis of circMAN1A2-SFPQ provides new insights into exosomal circRNA-based GC diagnostic and therapeutic strategies.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"44 1","pages":"24"},"PeriodicalIF":11.4000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762487/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-025-03288-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Exosomes, as extracellular membrane vesicles, play important roles in intercellular communication and can influence tumour progression. Circular RNAs (circRNAs) have been reported in various malignancies and are also important components of exosomes. However, the role of exosomal circRNAs in gastric cancer (GC) progression has not been completely clarified.
Methods: The exosomal circRNAs enriched in GC were identified using exosomal circRNA sequencing. The biological function of circMAN1A2 in GC was investigated using a series of in vitro and in vivo experiments. PKH-67 staining was used to label the exosomes. The molecular mechanism of exosomal circMAN1A2 was investigated via mass spectrometry, immunoprecipitation, Western blot, and single-cell RNA-sequencing data analyses.
Results: In our study, we determined that circMAN1A2 (hsa_circ_0000118) was enriched in GC-derived exosomes. Higher circMAN1A2 expression was related to poor survival in GC patients (HR = 2.917, p = 0.0120). Exosomal circMAN1A2 promoted GC progression in vitro and in vivo and suppressed the antitumour activity of T cells. Moreover, circMAN1A2 bound to SFPQ in GC cells and T cells, promoting the G1/S phase transition of the cell cycle in GC cells while inhibiting the activation of the T cell receptor signalling pathway in T cells to decrease antitumour activity. Mechanistically, circMAN1A2 competed with FBXW11 for binding to SFPQ, preventing FBXW11-mediated k48-linked ubiquitination and SFPQ protein degradation, thereby stabilizing SFPQ expression.
Conclusions: Our work confirms the critical role of exosomal circMAN1A2 in the progression and immunosuppression of GC. This novel axis of circMAN1A2-SFPQ provides new insights into exosomal circRNA-based GC diagnostic and therapeutic strategies.
期刊介绍:
The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications.
We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options.
We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us.
We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community.
By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.