Light and dark biofilm adaptation impacts larval settlement in diverse coral species.

IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY
Paul A O'Brien, Sara C Bell, Laura Rix, Abigail C Turnlund, Shannon R Kjeldsen, Nicole S Webster, Andrew P Negri, Muhammad A Abdul Wahab, Inka Vanwonterghem
{"title":"Light and dark biofilm adaptation impacts larval settlement in diverse coral species.","authors":"Paul A O'Brien, Sara C Bell, Laura Rix, Abigail C Turnlund, Shannon R Kjeldsen, Nicole S Webster, Andrew P Negri, Muhammad A Abdul Wahab, Inka Vanwonterghem","doi":"10.1186/s40793-025-00670-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Recovery of degraded coral reefs is reliant upon the recruitment of coral larvae, yet the mechanisms behind coral larval settlement are not well understood, especially for non-acroporid species. Biofilms associated with reef substrates, such as coral rubble or crustose coralline algae, can induce coral larval settlement; however, the specific biochemical cues and the microorganisms that produce them remain largely unknown. Here, we assessed larval settlement responses in five non-acroporid broadcast-spawning coral species in the families Merulinidae, Lobophyllidae and Poritidae to biofilms developed in aquaria for either one or two months under light and dark treatments. Biofilms were characterised using 16S rRNA gene sequencing to identify the taxa associated with settlement induction and/or inhibition.</p><p><strong>Results: </strong>We show that light and biofilm age are critical factors in the development of settlement inducing biofilms, where different biofilm compositions impacted larval settlement behaviour. Further, we show that specific biofilm taxa were either positively or negatively correlated with coral settlement, indicating potential inducers or inhibitors. Although these taxa were generally specific to each coral species, we observed bacteria classified as Flavobacteriaceae, Rhodobacteraceae, Rhizobiaceae and Pirellulaceae to be consistently correlated with larval settlement across multiple coral species.</p><p><strong>Conclusions: </strong>Our work identifies novel microbial groups that significantly influence coral larval settlement, which can be targeted for the discovery of settlement-inducing metabolites for implementation in reef restoration programs. Furthermore, our results reinforce that the biofilm community on coral reef substrates plays a crucial role in influencing coral larval recruitment, thereby impacting the recovery of coral reefs.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"20 1","pages":"11"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762876/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiome","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1186/s40793-025-00670-0","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Recovery of degraded coral reefs is reliant upon the recruitment of coral larvae, yet the mechanisms behind coral larval settlement are not well understood, especially for non-acroporid species. Biofilms associated with reef substrates, such as coral rubble or crustose coralline algae, can induce coral larval settlement; however, the specific biochemical cues and the microorganisms that produce them remain largely unknown. Here, we assessed larval settlement responses in five non-acroporid broadcast-spawning coral species in the families Merulinidae, Lobophyllidae and Poritidae to biofilms developed in aquaria for either one or two months under light and dark treatments. Biofilms were characterised using 16S rRNA gene sequencing to identify the taxa associated with settlement induction and/or inhibition.

Results: We show that light and biofilm age are critical factors in the development of settlement inducing biofilms, where different biofilm compositions impacted larval settlement behaviour. Further, we show that specific biofilm taxa were either positively or negatively correlated with coral settlement, indicating potential inducers or inhibitors. Although these taxa were generally specific to each coral species, we observed bacteria classified as Flavobacteriaceae, Rhodobacteraceae, Rhizobiaceae and Pirellulaceae to be consistently correlated with larval settlement across multiple coral species.

Conclusions: Our work identifies novel microbial groups that significantly influence coral larval settlement, which can be targeted for the discovery of settlement-inducing metabolites for implementation in reef restoration programs. Furthermore, our results reinforce that the biofilm community on coral reef substrates plays a crucial role in influencing coral larval recruitment, thereby impacting the recovery of coral reefs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Microbiome
Environmental Microbiome Immunology and Microbiology-Microbiology
CiteScore
7.40
自引率
2.50%
发文量
55
审稿时长
13 weeks
期刊介绍: Microorganisms, omnipresent across Earth's diverse environments, play a crucial role in adapting to external changes, influencing Earth's systems and cycles, and contributing significantly to agricultural practices. Through applied microbiology, they offer solutions to various everyday needs. Environmental Microbiome recognizes the universal presence and significance of microorganisms, inviting submissions that explore the diverse facets of environmental and applied microbiological research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信