{"title":"Retinal OCT image classification based on MGR-GAN.","authors":"Kun Peng, Dan Huang, Yurong Chen","doi":"10.1007/s11517-025-03286-1","DOIUrl":null,"url":null,"abstract":"<p><p>Accurately classifying optical coherence tomography (OCT) images is essential for diagnosing and treating ophthalmic diseases. This paper introduces a novel generative adversarial network framework called MGR-GAN. The masked image modeling (MIM) method is integrated into the GAN model's generator, enhancing its ability to synthesize more realistic images by reconstructing them based on unmasked patches. A ResNet-structured discriminator is employed to determine whether the image is generated by the generator. Through the unique game process of the generative adversarial network (GAN) model, the discriminator acquires high-level discriminant features, essential for precise OCT classification. Experimental results demonstrate that MGR-GAN achieves a classification accuracy of 98.4% on the original UCSD dataset. As the trained generator can synthesize OCT images with higher precision, and owing to category imbalances in the UCSD dataset, the generated OCT images are leveraged to address this imbalance. After balancing the UCSD dataset, the classification accuracy further improves to 99%.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03286-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurately classifying optical coherence tomography (OCT) images is essential for diagnosing and treating ophthalmic diseases. This paper introduces a novel generative adversarial network framework called MGR-GAN. The masked image modeling (MIM) method is integrated into the GAN model's generator, enhancing its ability to synthesize more realistic images by reconstructing them based on unmasked patches. A ResNet-structured discriminator is employed to determine whether the image is generated by the generator. Through the unique game process of the generative adversarial network (GAN) model, the discriminator acquires high-level discriminant features, essential for precise OCT classification. Experimental results demonstrate that MGR-GAN achieves a classification accuracy of 98.4% on the original UCSD dataset. As the trained generator can synthesize OCT images with higher precision, and owing to category imbalances in the UCSD dataset, the generated OCT images are leveraged to address this imbalance. After balancing the UCSD dataset, the classification accuracy further improves to 99%.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).