{"title":"Structural Characterizations and Biological Evaluation of a Natural Polysaccharide from Branches of <i>Camellia oleifera</i> Abel.","authors":"Shengjia Lu, Yali Zhang, Yanghui Ou, Jianghui Xin, Hongliang Yao, Litao Guan","doi":"10.3390/ph18010051","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong><i>Camellia oleifera</i> Abel (<i>C. oleifera</i>) is widely cultivated and serves as an important source of edible oil. Yet, during oil production, pruned branches generate significant waste and contribute to environmental pollution.</p><p><strong>Objectives: </strong>In this work, we obtain a natural polysaccharide from the branches of <i>C. oleifera</i> and optimize its extraction using Box-Behnken design (BBD), which is a statistical method commonly used in response surface methodology. Additionally, we study its properties, such as monosaccharide composition, structural features, antioxidant, and anti-inflammatory abilities.</p><p><strong>Results: </strong>BBD was employed to optimize polysaccharide extraction (solid-liquid ratio = 1:40; 90 °C; 130 min) for a higher yield. After purification, the major monosaccharides of branches of <i>C. oleifera's</i> polysaccharide (CBP) were disclosed as glucose and galactose. Subsequent structural features of CBP were measured. The antioxidant and anti-inflammatory abilities were measured. The highly scavenging rates of the 2,2-diphenyl-1-picrylhydrazyl and hydroxyl radicals, with the chelating capacity of Fe<sup>2+</sup>, indicate potent antioxidant activity of CBP.</p><p><strong>Conclusions: </strong>In general, CBP demonstrated significant anti-inflammatory activity with down-regulating the expression of IL-6 and IL-1β in the LPS-induced macrophage RAW264.7 model. This bioactive polysaccharide adds value to waste branches by offering a novel approach to waste recycling and the development of <i>C. oleifera</i>.</p>","PeriodicalId":20198,"journal":{"name":"Pharmaceuticals","volume":"18 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769495/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/ph18010051","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Camellia oleifera Abel (C. oleifera) is widely cultivated and serves as an important source of edible oil. Yet, during oil production, pruned branches generate significant waste and contribute to environmental pollution.
Objectives: In this work, we obtain a natural polysaccharide from the branches of C. oleifera and optimize its extraction using Box-Behnken design (BBD), which is a statistical method commonly used in response surface methodology. Additionally, we study its properties, such as monosaccharide composition, structural features, antioxidant, and anti-inflammatory abilities.
Results: BBD was employed to optimize polysaccharide extraction (solid-liquid ratio = 1:40; 90 °C; 130 min) for a higher yield. After purification, the major monosaccharides of branches of C. oleifera's polysaccharide (CBP) were disclosed as glucose and galactose. Subsequent structural features of CBP were measured. The antioxidant and anti-inflammatory abilities were measured. The highly scavenging rates of the 2,2-diphenyl-1-picrylhydrazyl and hydroxyl radicals, with the chelating capacity of Fe2+, indicate potent antioxidant activity of CBP.
Conclusions: In general, CBP demonstrated significant anti-inflammatory activity with down-regulating the expression of IL-6 and IL-1β in the LPS-induced macrophage RAW264.7 model. This bioactive polysaccharide adds value to waste branches by offering a novel approach to waste recycling and the development of C. oleifera.
PharmaceuticalsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
6.10
自引率
4.30%
发文量
1332
审稿时长
6 weeks
期刊介绍:
Pharmaceuticals (ISSN 1424-8247) is an international scientific journal of medicinal chemistry and related drug sciences.Our aim is to publish updated reviews as well as research articles with comprehensive theoretical and experimental details. Short communications are also accepted; therefore, there is no restriction on the maximum length of the papers.